English  |  正體中文  |  简体中文  |  Items with full text/Total items : 66984/66984 (100%)
Visitors : 22918165      Online Users : 432
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/491


    Title: 牛頓型疊代法二次項效應
    Authors: 周宏勳;Hong-Hsin Chung
    Contributors: 土木工程研究所
    Keywords: 牛頓型疊代法;二次項;牛頓 - 拉弗森;Newton - Raphson;Second order term
    Date: 2000-06-29
    Issue Date: 2009-09-18 17:06:28 (UTC+8)
    Publisher: 國立中央大學圖書館
    Abstract: 在解非線性方程組的領域中牛頓 - 拉弗森一直被多數人所採用,本研究的目的是探討牛頓型疊迭代法加入二次項的效果。一般而言,計算二次項雖然對於高次項方程式以及較遠的初始值會有較牛頓法佳的收斂表現,但仍無法確實掌握其行為,本研究即針對此進行了深入的討論。更混合了加入二次項的方法與牛頓法來進行迭代計算。 本研究是把加入二次項的早差分法、混合法與牛頓法作比較。針對不同的方程式進行迭代,探討以下項目 : (1) 迭代次數。 (2) 平均每次迭代計算的CPU時間。 (3) 不同類型的方程式對於迭代時間和迭代次數的影響。 When solving nonlinear equations the Newton - Raphson method is used by many people. This research studies a Newton-type method which takes the second order terms into account. It was believed that the precise mechanism is still not well understood. This project compares the method having the second order terms with the Newton — Raphson’s method. For problems with different nonlinear equations the following items are investigated: (1)Numbers of iterations in the computations. (2)The influence of different kind of equations to number of iteration and CPU time.
    Appears in Collections:[土木工程研究所] 博碩士論文

    Files in This Item:

    File SizeFormat
    0KbUnknown900View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明