English  |  正體中文  |  简体中文  |  Items with full text/Total items : 69937/69937 (100%)
Visitors : 23086860      Online Users : 728
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/49126


    Title: 高效能一維白金基奈米材料之製備及其應用於質子交換膜燃料電池陰極觸媒之研究;Preparation and Application of Highly Effective Pt-Based 1-D Nanomaterials as Cathode Catalysts for Proton Exchange Membrane Fuel Cells
    Authors: 王冠文
    Contributors: 材料科學與工程研究所
    Keywords: proton exchange membrane fuel cell;oxygen reduction reaction;Pt-Pd;Pt-Au;nanowires/tubes;core/shell structure;polarization resistance;研究領域:材料科技
    Date: 2011-08-01
    Issue Date: 2012-01-17 17:47:21 (UTC+8)
    Publisher: 行政院國家科學委員會
    Abstract: 本研究擬製備一維Pt-Au 及Pt-Pd 奈米線/管,以應用於質子交換膜燃料電池(氫氣或甲醇)之陰極觸媒。Pt 基合金奈米顆粒觸媒在產業界與學術界已被廣泛地研究,然則較少的研究使用Pt 基一維奈米線/管當作陰極催化劑,一維奈米結構具有異向性,因此有助於電子的傳播或移轉,且其結構相較於零維結構而言,在燃料電池的操作環境下,不易於發生溶解,Ostwald ripening 或團聚等現象。此外,在零維PtAu 的研究中已報導了 Au 能改善Pt 親氧性並且提升其耐久度,而Pd 在Pt-Pd 中,則可幫助氧分子在Pt 活性位置上的分解,並且修飾Pt-Pt 的鍵長。因此,本研究擬製備PtAu/C 及PtPd/C 一維陰極催化劑應用於氧氣還原反應(ORR)。本計畫第一年擬製備一維 PtAu/C 合金觸媒,第二年擬製備PtPd/C 合金觸媒,利用製程參數來控制合金觸媒的合金度和表面組成,以得到高活性的ORR 觸媒,且系統性的研究催化劑之形貌-活性關聯(morphology–activity relationship),並期望PtAu/C 及 PtPd/C 一維奈米陰極催化劑在活性與耐久度,甚至甲醇容忍度上超越商用觸媒Pt/C(0.9 V 之Pt 質量活性目標值為>0.3 A/mg。加速穩定度測試,1000 圈掃描其0.85 V 的電流活性損失降低到40 %。);第三年擬將所研製的觸媒推向實際應用面,具體利用於電池測試系統上(0.6 V 之電流密度目標為1.25 A/cm2,而最大電流密度目標為 0.90 W/cm2。),研究實際操作時陰極觸媒層極化阻抗以及結構上的變化對電池效能之影響研究,期能透過此計劃,建立高活性一維奈米催化劑製備與電極測試之標準流程與平台。對學術研究而言,本計畫可提供一維奈米材料製程參數與活性的關聯性,達到材料研究之目的。對於產業界而言,可提供活性佳之觸媒,以利於觸媒商品化以及燃料電池應用。本計畫將對於奈米材料科技,表面化學,觸媒應用,燃料電池商業化帶來貢獻。In this project, the carbon supported Pt-Au and Pt-Pd nanowires/tubes will be prepared as the cathode catalysts for proton exchange membrane fuel cell powered with either methanol or hydrogen. The carbon supported Pt-based alloy nanoparticles have been intensively used and studied as electrocatalysts, however, only few studies available have reported the application of Pt-based nanowire/tubes as electrocatalysts. These anisotropic one-dimensional nanomaterials can provide facile pathways for charge transfer. The micrometersized length of nanowires/tubes makes them less vulnerable to dissolution, Ostwald ripening, and aggregation during fuel cell operation than the nanoparticles. Besides, it has been reported that Au can enhance the durability and modify the oxyphilicity of Pt-Au alloy nanoparticles while Pd can modify the Pt-Pt interatomic bond length and enhance the O2 decomposition on the Pt active sites. Therefore, the carbon supported Pt-Au and Pt-Pd nanowires/tubes will be applied as the cathode catalysts toward oxygen reduction reaction (ORR). In phase one, the preparation parameters will be controlled finely to optimize the surface/structure properties of the PtAu/C nanowires/tubes. In phase two, PtPd/C nanowires/tubes with high ORR activity will be prepared based on the experience of phase one. It is highly expected that the structure-tunable and surface-controllable Pt-Au and Pt-Pd 1-D catalysts can be obtained by the mofication of the preparation method. The relationship between morphology-activity will be also elucidated in this project. The cathode catalysts with different core/shell structures and higher ORR performance, stability, and methanol resistance than commercial Pt/C catalysts will be prepared through those methods (the Pt mass activity at 0.9 V will be larger than 0.3 A/mg and the activity loss at 0.85 V will be less than 40 % after 1000 cycles by the accelerated durability test at). In phase three, the prepared Pt-based nanowire/tubes will be applied as cathode catalysts in the fuel cell test station (the current density at 0.6 V will be about 1.25 A/cm2 and the maximum power density will be about 0.90 W/cm2). The effects including variations in the cathodic polarization resistance and the microstructure during discharging or long-term measurement on the performance of the fuel cells will be investigated. It is highly expected that through this 3 year project, a preparation route and standard operation procedure for designing high effective 1-D Pt-based nanocatalysts can be established. Besides, some models will be proposed to get insight into the growth mechanism for the preparation of structure and surface tailored Pt-Au and Pt-Pd 1-D nanomaterials based on the theory of materials science. For the industrial applications, the preparation of novel catalysts can help the commercialization of fuel cells. The experimental results will make some contributions to the field of materials science, surface chemistry, catalysis and fuel cells. 研究期間:10008 ~ 10107
    Relation: 財團法人國家實驗研究院科技政策研究與資訊中心
    Appears in Collections:[材料科學與工程研究所 ] 研究計畫

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML410View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明