一般而言,多接面(multi-junction)矽薄膜太陽能電池與H.I.T(Hetero junction intrinsic thin film)太陽能電池製程,係以電漿輔助化學氣相沉積設備(Plasma-enhanced chemical vapor deposition ,PECVD)成長各種非晶矽介面結構,然則此法有離子轟擊(Ionic bombardment)的缺點,其後續處理將增加製造成本。故本實驗室與中央大學光電中心合作開發以電子迴旋共振與感應式電感耦合電漿化學氣相沉積 (Electron cyclotron resonance and inductively coupled plasma chemical vapor deposition , ECR/ICP CVD)取代PECVD 的改良製程。為於現有基礎上,尋求技術突破生產更高效率、低成本的太陽能電池,並改變現行由美日把持製程設備關鍵零組件製造、整合等相關科技的局面,增加核心技術自我掌控能力。本計畫擬於現有 ECR/ICP CVD 設備中設計一精密溫控系統與創新之類平面多點式蘭牟爾探針(Langmuir Probe)同步電漿參數探測裝置,並整合光放射光譜儀進行電漿機制研究。加熱系統主要功用為控制矽薄膜之結晶率、表面型態與沉膜速率,並可作為後續腔體內熱流場對於電漿分布、電子溫度與薄膜沉積之關聯性探討。除加熱模組外,微波功率、腔體壓力、氣體流量、極化形式、磁場分佈等人為控制條件,更是直接影響製程腔體內電漿密度與特性的關鍵參數。是故本計畫將開發有別於傳統單探針型式的類平面式多點同步電漿參數量測系統,期望在最小化電漿探針擾動的前提下,突破過去線狀量測之數據未能確實反映腔體內電漿分佈的拘限,除可更精確理解ECR 磁場組態對於電漿特性與製程品質的影響外,更可藉由電漿量測資料與模擬數據的反覆驗證,大幅提升未來電漿內流場模擬的可靠度。為更進一步探究ECR/ICP 混成電漿之獨特電漿粒子作用機制,本團隊使用OES 光譜儀針對製程之電漿光譜、電漿粒子生成種類與交互作用等反應關係進行分析研究。最終,本研究將精確探求晶圓熱參數、共振磁場組態、大面積電漿密度分布等參數與其粒子反應機制,對於ECR/ICP CVD 設備太陽能矽薄膜製程之沉膜速率、品質與均勻度之關聯性,進而開發高沉積速率、大面積沉膜等關鍵技術以及製程參數最佳化的目標。具體而言,本計畫的目的包括:(1)開發基於ECR/ICP CVD 之太陽能矽薄膜製程加熱模組及整合(2) 開發基於ECR/ICP CVD 之多點同步電漿量測系統及整合(3)掌握矽薄膜製程沉膜設備之關鍵零組件技術 (4) 熱、電性數據資料收集分析與製程參數最佳化。(5)ECR/ICP 混成電漿特有反應機制與沉膜特性探討 (6) 將上述研究成果及開發經驗應用於常態型泛用沉積設備。 In general, multi-junction Silicon thin film solar cells and HIT (Hertero-junction Intrisinic Thin Film) solar cells use Plasma Enhanced Chemical Vapor Deposition (PECVD) in deposition of various interfacial structures on Amorphous silicon (a-Si) thin film. However, PECVD has generated a lot of ion bombardments on interface of the film and then needs to follow by various process treatments to remove these interfacial defects caused by ion bombardments. This project will incorporate with Optical Science Center of NCU in developing Electron cyclotron resonance and inductively coupled plasma chemical vapor deposition (ECR/ICP CVD) to replace PECVD for improvement of silicon thin film processes. In order to have a technology breakthrough in processing a low cost with high efficiency solar cell, a subsystem by reduction of using imported key components for ECR/ICP CVD will be developed. This subsystem is to carry out a plasma reaction mechanism study. The subsystem will include a precision control of heating module, two dimensional with innovative multi-parallel detections of plasma Langmuir probes and an integrated optical emission spectroscopy (OES). Thus, the objective of this research is to obtain the control parameters from heater module, microwave polarization, electromagnetic distribution and plasma reaction species. This approach is not only providing precisely controlled parameters which are related to plasma characters and process film quality but also obtaining data with back and force in simulation for improving reliability of the internal plasma fields and thermal distribution in the system in order for reaching a high deposition rate and good uniformity in a large area and larger process window for ECR/ICP CVD system. In summary, the overall objectives of project include: (1) to develop a heater module for silicon thin film process (2) to develop a multi-parallel Langmuir probes for plasma density measurement in ECR/ICP CVD system. (3) to grasp the ECR/ICP CVD key components technology for silicon thin film and HIT process. (4) to collect thermal and electrical data, and its mechanism species analyses for parameter optimization. (5) to investigate the reaction mechanism for thin film characteristic study (6) to apply the research and development results to develop general deposition equipment approach in the future. 研究期間:10008 ~ 10107