石英具有壓電效應、化學穩定性良好等優異性質,因此廣泛被應用於微機電系統之關鍵零組件。但由於其硬脆特性,若以傳統之加工方式很難在效率與精度二者之間同時兼顧。電化學放電加工是以高溫熔融並且蝕刻輔助加工的非傳統加工方法,相當適合作為加工石英之製程技術。唯此製程技術中,由於電化學反應深深影響電極表面所形成之氣膜狀態,而氣膜之結構又為影響加工效率與精度的主要因素,然目前為止相關之研究仍不多見。有鑑於此,本計畫將針對上述問題分三年進行研究:第一年:探討不同電極材料的表面形貌對接觸角及潤濕性的影響,並對氣泡貼覆於電極表面的狀態,及氣膜成形特性進行研究。第二年:利用雙模式電源提供額外的恆定電壓輸出,以維持不間斷的電化學反應來避免氣膜之消散,進而改善加工精度。第三年:以微型球狀電極為刀具,利用該電極的直徑差及曲面外型特性,突破既有電化學放電加工於加工深度之限制,而建立石英微孔的精微加工技術。 Quartz is the critical material used in MEMS due to its beneficial properties, such as piezo-electric effect and stable chemical properties. However, it is difficult to machine between the efficiency and accuracy using conventional methods. Electrochemical discharge machining (ECDM) is an emerging non-traditional machining process that involves high-temperature melting assisted by accelerated chemical etching. The electrochemical reaction affects the coalesce status of gas film in ECDM. The structure of gas film is in turn affected by efficiency and accuracy. Therefore, according the above issues, these researches will separate into three years to study: First year: To explore the variations in coalescence status of gas film on different tool electrode, and to examine the effect of gas film on machining performance. Second year:Maintain the electrochemical reaction to enhance the gas film stability so as to improve the ECDM performance by dual-model power supply. Third year: Using the spherical electrode with a multi diameter and curve surface to enhance machining efficiency in deep machining depth. And also create the precise micro-fabrication process. 研究期間:10008 ~ 10107