由於地球能源逐漸的減少,加上全球暖化,使得人們對『綠色能源』的需求日益升高。太陽能源具有相當的優勢,而且不會對環境造成污染,因此如何利用太陽能便成了全球科學所關注的議題。其中最好的方法便是利用太陽能電池將光能轉換成電能,而染料敏化太陽能電池更具有低成本,高轉換率的特性,故極具開發的潛能。Gratzel 及其實驗團隊開發了一系列的多吡啶钌金屬錯化合物(N3、N719 與Black dye),具極佳的光收成特性。同時,許多的研究者也利用不同的供-受電子體系來開發具有高莫耳消光係數的非金屬系有機光敏染料,而在具有高供電子基團的染料中,以2-氰基丙烯酸基團(cyanoacrylic acid)為電子受體的染料最能表現出高光電特性。全球的科學家在近年開始將研究重心著重在提升染料的光電轉換效率,到目前為止已經有大量關於修改多吡啶的共軛系統以及改變不同的供- 受電子體系之文獻出現。本研究計劃的主要研究重點在於開發一系列穩定且具高光電轉換的染料以應用於染料敏化太陽能電池。具體特定目標如下: A. 設計與合成利用含氮雜環碳烯基[N-heterocyclic carbene (NHC)]與吡啶基為骨架之钌金屬錯合物: 1. 利用即有的方法合成所設計氮雜環碳烯基 (NHC) 與吡啶基為骨架的钌金屬錯合物,並改良、優化與開發創新所需相關的合成反應。 2. 經由結構分析來確認氮雜環碳烯基 (NHC) 與吡啶基的钌金屬錯合物分子構形,並期找出具高轉換效率染料之結構設計概念。 3. 合成一系列具穩定且高轉換效率的氮雜環碳烯基 (NHC) 與吡啶基钌金屬錯合物的染料並將其應用於染料敏化電池。 B. 評估各種有機光敏染料的光電轉換效率: 1. 利用2-氰基丙烯酸(cyanoacrylic acid)做為受電子體系(acceptor group),並藉以其為主體之構形固定法規劃出新世代的有機光敏染料。 2. 評量染料的能量轉換效率並探討結構與效率間的關連性,便於設計出更有效率的2-氰基丙烯酸(cyanoacrylic acid)為受電子體系(acceptor group)之染料。 3. 研究具有不同的供-受電子體系或開發具不同的受電子體系(acceptor group)的有機光敏染料,並找出元件效率與結構之間的對應關係。 C. 研發非钌金屬含有機與無機結構混合概念的光敏染料: 1. 利用組合式設計合成不同的非钌金屬含有機與無機結構混合概念之光敏染料。 2. 研究光敏染料之光電特性與結構間的對應關係。 3. 量測有別於二氧化鈦之半導體薄膜與光敏染料間的光電轉換情形以找出最適當的元件組裝方式。 Increasing energy demands and concerns over global warming have led to a greater focus on renewable energy sources in recent years. Dye-sensitized solar cells (DSSCs) have a significant potential to be used as low-cost photovoltaic devices for light to electricity conversion. Gratzel and co-workers investigated ruthenium(II) polypyridyl complexes such as N3, N719 and Black dye exhibiting highly efficient light harvesting properties. Many researchers also explored inexpensive metal free organic sensitizers with different electron donor and acceptor systems having high molar extension coefficient. Among dyes with different strong donating groups, cynoacrylic acid as an electron acceptor showed excellent photovoltaic properties. Recently, worldwide researchers geared their attention to further improve the photoelectric conversion efficiency of sensitizers. Most modifications were carried out using various conjugate substituents on ancillary ligand of ruthenium(II) polypyridyl complexes or employing different donor and acceptor groups in organic dyes. The main objective of this research proposal is to develop stable and highly efficient sensitizer dyes for DSSC applications. Specific aims are: A. Rational design and synthesis of N-heterocyclic carbene (NHC) pyridine-based ruthenium(II) complexes: 1. To apply present, and also formulate new methodologies of synthesis to prepare proposed NHC pyridine-based ruthenium(II) complexes. 2. To identify the critical structural requirements of NHC pyridine-based ruthenium(II) complexes and to achieve the desired power conversion efficiency through structure-function analysis. 3. To generate several stable and highly efficient NHC pyridine-based ruthenium(II) complexes for dye-sensitized solar cell applications. B. Photoelectric conversion efficiency evaluation of various organic dyes: 1. To prepare a new generation of organic dyes with conformational constrain around the cynoacrylic acid moiety (acceptor group). 2. To evaluate the power conversion efficiency of the constrained dyes and correlate their efficiencies with the corresponding geometry in order to design more efficient cynoacrylic acid sensitizers. 3. To explore several new organic sensitizers with different donor and acceptor systems or develop dyes with other acceptor group and study the correlation between device performances with structural modifications. C. Discovery of novel ruthenium free organic metal-hybrid sensitizers: 1. To design and synthesize various ruthenium free organic metal-hybrid sensitizers using combinatorial approach. 2. To evaluate the photovoltaic properties of the identified hits. 3. To optimize and fine tune device conditions between dyes and the semiconductor films with a different mesoscopic oxides’ layer. 研究期間:10008 ~ 10107