本研究計畫之計畫名稱為”以光學能隙工程提升非(微)晶矽薄膜太陽能電池效率”, 本研究計畫目的在於以光學能隙工程法來設計並優化非(微)晶矽薄膜太陽能電池來提昇太陽能電池的光電轉換效率。在非(微)晶矽薄膜的製作上,將以PECVD 或 ECRCVD 製程技術來製作非(微)晶矽薄膜及太陽能電池,並以定光電流法量測不同結晶率的非(微)晶矽薄膜的光學能隙、吸收係數、缺陷密度等各項光電特性,再利用光學能隙工程法設計單一接面最佳化能隙薄膜太陽能電池,利用AMPS、PC-1D、FDTD 與 Essential Macleod 等軟體來分析與設計太陽能電池結構並與製作後量測結果來互相驗證。因此,為達成此研究目的,本研究計畫的執行連結了實驗製作、模擬、設計與元件量測與分析,分兩年來執行本計劃。研究方法可分為四個部份,分別為不同結晶率的非 (微)晶矽薄膜製程、非(微)晶矽薄膜的光電特性量測、光學能隙工程法設計太陽能電池、及單一最佳化能隙薄膜太陽能電池製作與量測。最後期望以上述方法,設計與製作出最佳化的高效率非(微)晶矽薄膜太陽能電池。 This is a proposal entitled of “Efficiency improvement of micromorphous silicon thin-film solar cell using optical bandgap engineering” regarding the enhancement of optical efficiency of micromorphous silicon thin-film solar cells using optical bandgap engineering. The fabrication method of the solar cell is based on PECVD or ECRCVD. The photonic properties of the solar cell such as optical bandgap, absorption coefficient, and defect density will be measured using constant photocurrent method. The layer design of the solar cell will be established under the theory of optical bandgap engineering. The optimum single junction micromorphous silicon thin-film solar cell can be non-constant bandgap profile simulated using AMPS, PC-1D, FDTD and Essential Macleod based on the stated absorption model. Finally, the optimum single junction micromorphous silicon thin-film solar cell will be fabricated and analysis. The testing results will be compared with the designed ones. To achieve the research object, there are four parts of the research methods in the two years period: the fabrication of the micromorphous silicon thin films with different crystallization ratio; measurement of the photonic properties of the micromorphous silicon thin films; design of the thin-film solar cell using optical bandgap engineering; and the fabrication and analysis of the optimum single junction micromorphous silicon thin-film solar cell. To combine all of the improvement methods, the micromorphous silicon thin-film solar cells will be optimized as a high efficiency solar cell. 研究期間:10008 ~ 10107