本計劃的技術重點在於利用標準CMOS 製程,以不同的結構設計出矽光檢測器,最大優點是能與後級電路直接整合達成光收發器積體電路(OEIC),應用在短距離傳輸。但利用矽材料來製作光檢測器,有許多的挑戰,因矽為非直接能隙特性,吸收係數非常小,因此在850 nm 的波段操作中,其響應度及速度均遠低於砷化鎵的光檢測器。但主持人團隊在矽光檢測器上的研究已達世界水準,應邀在IEEE JSTQE 上發表世界紀錄的8.7 GHz 頻寬。因此在此二年期計畫中,以不同的角度來進一步改善矽光檢測器在 CMOS 製程中的缺點,達到頻寬 > 15 GHz 的目標,並擁有高的響應度。第一年的四個主題分別為(1)減少矽基板慢速光電流以改善PD 高頻特性,(2)具Deep n-well 結構之新型八邊形矽光檢測器,(3)矽光檢測器之表面保護層(抗反光層)的最佳化,(4)使用微機電製程之新型矽光檢測器。第二年的四個主題分別為(1)累增崩潰新型矽光檢測器,(2) 側照式新型矽光檢測器(Edge-coupled PD),(3)矽光檢測器與後級電路的光電整合積體電路,(4)多通道矽光檢測器串音(cross-talk)研究,以達到多通道每通道>10 Gbps 的並列式光連接系統為目標。此項研究可以結合現有在Si CMOS/BiCMOS 製程上的IC 優勢來達到光纖通訊的寬頻應用,若能成功則將成為產業界未來的一個重大突破。This two-year proposal is to implement new high-speed Si photodiodes in standard CMOS technology. It is possible to integrate Si PD and mature circuits by using CMOS technology for the short-range communication application. However, it is difficult to obtain good performance using Si material as optical devices due to its indirect bandgap and low carrier mobility. We have presented some results in journals with record high bandwidth of 8.7 GHz. Therefore, we continue to improve Si photodiodes by different approaches. There are eight topics in the proposal including (1) improved PD bandwidth by removing slow diffusion carriers in the substrate, (2) new PD layout with deep n-well structure and optimal bias, (3) optimal surface passivation for 850nm wavelength light incident, (4) new Si PD with MEMS technology to remove slow diffusion carriers, (5) avalanche Si photodiode in CMOS technology, (6) edge-coupled Si PD, (7) Si PD with TIA/LA integration, (8) crosstalk study in a multi-channel PD layout. 研究期間:10008 ~ 10107