中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/49792
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42142938      Online Users : 1339
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/49792


    Title: Extraction of oil slicks on the sea surface from optical satellite images by using an anomaly detection technique
    Authors: Chen,CF;Chang,LY
    Contributors: 土木工程學系
    Keywords: MAXIMUM-LIKELIHOOD;EM ALGORITHM;FILM
    Date: 2010
    Issue Date: 2012-03-27 16:16:51 (UTC+8)
    Publisher: 國立中央大學
    Abstract: Many methods for the detection of oil pollution on the sea surface from remotely sensed images have been developed in recent years. However, because of the diverse physical properties of oil on the sea surface in the visible wavelengths, such images are easily affected by the surrounding environment. This is a common difficulty encountered when optical satellite images are used as data sources for observing oil slicks on the sea surface. However, provided the spectral interference generated by the surrounding environment can be regarded as noise and properly modeled, the spectral anomalies caused by an oil slick on normal sea water may be observed after the suppression of this noise. In this study, sea surface oil slicks are extracted by detecting spectral anomalies in multispectral optical satellite images. First, assuming that the sea water and oil slick comprise the dominant background and target anomaly, respectively, an RX algorithm is used to enhance the oil slick anomaly. The oil slick can be distinguished from the sea water background after modeling and suppression of inherent noise. Next, a Gaussian mixture model is used to characterize the statistical distributions of the background and anomaly, respectively. The expectation maximization (EM) algorithm is used to obtain the parameters needed for the Gaussian mixture model. Finally, according to the Bayesian decision rule of minimum error, an optimized threshold can be obtained to extract the oil slick areas from the source image. Furthermore, with the obtained Gaussian distributions and optimized threshold, a theoretical false alarm level can be established to evaluate the quality of the extracted oil slicks. Experimental results show that the proposed method can not only successfully detect oil slicks from multispectral optical satellite images, but also provide a quantitative accuracy evaluation of the detected image.
    Relation: JOURNAL OF APPLIED REMOTE SENSING
    Appears in Collections:[Department of Civil Engineering] journal & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML462View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明