中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/49794
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41640449      Online Users : 1389
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/49794


    Title: Hybrid Rotating/Fixed-Crack Model for High-Performance Fiber-Reinforced Cementitious Composites
    Authors: Hung,CC;El-Tawil,S
    Contributors: 土木工程學系
    Keywords: CONSTITUTIVE MODEL;CONCRETE;BEHAVIOR;SHEAR;SIMULATION;STRENGTH;MEMBERS
    Date: 2010
    Issue Date: 2012-03-27 16:16:54 (UTC+8)
    Publisher: 國立中央大學
    Abstract: High-performance fiber-reinforced cementitious composite (HPFRCC) materials are distinguished from conventional concrete materials by their unique strain-hardening behavior in tension, which translates into enhanced shear and bending resistance at the structural level. The favorable properties of HPFRCC have motivated researchers to explore using the material to replace traditional concrete in critical elements of a structure. To predict the behavior of HPFRCC components under various loading conditions, a material model based on a plane stress, orthogonal, hybrid rotating/fixed crack approach was developed in this study. The developed material model addresses the material's pronounced strain hardening behavior and takes into account its loading/unloading/reloading characteristics. The validity of the developed material model is shown through extensive comparisons between experimental data and numerical results for test specimens exhibiting varied structural responses. The comparison results indicate that the developed HPFRCC material model is capable of simulating the behavior of HPFRCC structures with reasonable accuracy.
    Relation: ACI MATERIALS JOURNAL
    Appears in Collections:[Department of Civil Engineering] journal & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML439View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明