中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/49807
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41639518      Online Users : 1288
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/49807


    Title: A particle swarm optimization-based hybrid algorithm for minimum concave cost network flow problems
    Authors: Yan,SY;Shih,YL;Lee,WT
    Contributors: 土木工程學系
    Keywords: LOCAL SEARCH ALGORITHMS;TABU-SEARCH
    Date: 2011
    Issue Date: 2012-03-27 16:17:18 (UTC+8)
    Publisher: 國立中央大學
    Abstract: Traditionally, minimum cost transshipment problems have been simplified as linear cost problems, which are not practical in real applications. Some advanced local search algorithms have been developed to solve concave cost bipartite network problems. These have been found to be more effective than the traditional linear approximation methods and local search methods. Recently, a genetic algorithm and an ant colony system algorithm were employed to develop two global search algorithms for solving concave cost transshipment problems. These two global search algorithms were found to be more effective than the advanced local search algorithms for solving concave cost transshipment problems. Although the particle swarm optimization algorithm has been used to obtain good results in many applications, to the best of our knowledge, it has not yet been applied in minimum concave cost network flow problems. Thus, in this study, we employ an arc-based particle swarm optimization algorithm, coupled with some genetic algorithm and threshold accepting method techniques, as well as concave cost network heuristics, to develop a hybrid global search algorithm for efficiently solving minimum cost network flow problems with concave arc costs. The proposed algorithm is evaluated by solving several randomly generated network flow problems. The results indicate that the proposed algorithm is more effective than several other recently designed methods, such as local search algorithms, genetic algorithms and ant colony system algorithms, for solving minimum cost network flow problems with concave arc costs.
    Relation: JOURNAL OF GLOBAL OPTIMIZATION
    Appears in Collections:[Department of Civil Engineering] journal & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML653View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明