In the real world, planned aircraft maintenance schedules are often affected by incidents. Airlines may thus need to adjust their aircraft maintenance schedules following the incidents that occur during routine operations. In tradition, such aircraft maintenance schedule adjustment has been performed manually, a process which is neither effective nor efficient, especially when the problem scale is large. In this study, an aircraft maintenance schedule adjustment model is developed, with the objective of minimizing the total system cost, subject to the related operating constraints. The model is formulated as a zero-one integer program and is solved using a mathematical programing solver. The effectiveness of the model is evaluated by application to a case study using data from an aircraft maintenance center in Taiwan. The test results show the proposed model, as well as the scheduling rules abstracted from the results are useful for the decision maker to adjust good maintenance schedules.