English  |  正體中文  |  简体中文  |  Items with full text/Total items : 65318/65318 (100%)
Visitors : 21644215      Online Users : 572
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/49823


    Title: Investigation of the impacts of vegetation distribution and evaporative cooling on synthetic urban daytime climate using a coupled LES-LSM model
    Authors: Huang,HY;Margulis,SA;Chu,CR;Tsai,HC
    Contributors: 土木工程學系
    Keywords: CONVECTIVE BOUNDARY-LAYER;LARGE-EDDY SIMULATION;LAND-ATMOSPHERE INTERACTIONS;SURFACE HEAT-FLUX;HETEROGENEOUS SURFACES;RADIATIVE-TRANSFER;SCALE MODELS;CANOPY MODEL;ENVIRONMENT;FORMULATION
    Date: 2011
    Issue Date: 2012-03-27 16:17:48 (UTC+8)
    Publisher: 國立中央大學
    Abstract: Local flow properties and regional weather or climate are strongly affected by land-atmosphere interactions of momentum and scalars within the daytime convective boundary layer (CBL). In this study, we investigate the impact of green space scale on the daytime atmospheric boundary layer (ABL) over a synthetic urban domain using a recently developed large-eddy simulation-land surface model (LES-LSM) framework. With the use of realistic soundings as initial conditions, a series of numerical experiments over synthetic urban surfaces with varied scale of vegetated area is performed. Simulated micrometeorological properties, surface fluxes, basic CBL characteristics, and cloud distribution are analysed. The results show reference-level air potential temperature and specific humidity as well as surface fluxes over green space are significantly affected by the scale of green space in the urban domain. The surface organization due to vegetated area scale also has impacts on horizontally averaged scalar and momentum profiles; however, the magnitude in this study is smaller than the results of a previous study using a set of offline surface fluxes as the lower boundary condition for LES. In addition, even though this study only performs a daytime diurnal cycle, the impact of green space scale on cloud distribution in simulations is significant. The cases with more organized green space yield lower-elevated cumulus cloud and larger-cloud cover fraction, which impacts the energy budget at the top of boundary layer and, in turn, could lead to additional surface cooling with respect to longer-term weather and climate. Copyright (C) 2010 John Wiley & Sons, Ltd.
    Relation: HYDROLOGICAL PROCESSES
    Appears in Collections:[土木工程學系 ] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML536View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明