English  |  正體中文  |  简体中文  |  Items with full text/Total items : 66984/66984 (100%)
Visitors : 22974954      Online Users : 400
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/49840


    Title: Theory and experimental study for sliding isolators with variable curvature
    Authors: Lu,LY;Lee,TY;Yeh,SW
    Contributors: 土木工程學系
    Keywords: FRICTION PENDULUM SYSTEM;STIFFNESS-CONTROLLABLE ISOLATION;FAULT SEISMIC ISOLATION;EXPERIMENTAL-VERIFICATION;ISOLATION BEARINGS;SEMIACTIVE CONTROL;ADAPTIVE-BEHAVIOR;DYNAMIC-ANALYSIS;MOTIONS;DAMPERS
    Date: 2011
    Issue Date: 2012-03-27 16:18:20 (UTC+8)
    Publisher: 國立中央大學
    Abstract: Because a conventional isolation system with constant isolation frequency is usually a long-period dynamic system, its seismic response is likely to be amplified in earthquakes with strong long-period wave components, such as near-fault ground motions. Seismic isolators with variable mechanical properties may provide a promising solution to alleviate this problem. To this end, in this work sliding isolators with variable curvature (SIVC) were studied experimentally. An SIVC isolator is similar to a friction pendulum system (FPS) isolator, except that its sliding surface has variable curvature rather being spherical. As a result, the SIVC's isolation stiffness that is proportional to the curvature becomes a function of the isolator displacement. By appropriately designing the geometry of the sliding surface, the SIVC is able to possess favorable hysteretic behavior. In order to prove the applicability of the SIVC concept, several prototype SIVC isolators, whose sliding surfaces are defined by a sixth-order polynomial function, were fabricated and tested in this study. A cyclic element test on the prototype SIVC isolators and a shaking table test on an SIVC isolated steel frame were all conducted. The results of both tests have verified that the prototype SIVC isolators do indeed have the hysteretic property of variable stiffness as prescribed by the derived formulas in this study. Moreover, it is also demonstrated that the proposed SIVC is able to effectively reduce the isolator drift in a near-fault earthquake with strong long-period components, as compared with that of an FPS system with the same friction coefficient. Copyright (C) 2011 John Wiley & Sons, Ltd.
    Relation: EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS
    Appears in Collections:[土木工程學系 ] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML278View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明