English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 78728/78728 (100%)
造訪人次 : 33348002      線上人數 : 550
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/49864


    題名: ANALYSIS OF THE CONCENTRIC DISTRACTION AND DISTRACTION LOSS OF THE BRIDGED ELBOW BY A DYNAMIC FIXATOR
    作者: Shih,KS;Lee,WS;Tseng,CS;Lu,TW;Hou,SM;Lin,SC
    貢獻者: 生物醫學工程研究所
    日期: 2010
    上傳時間: 2012-03-27 16:25:03 (UTC+8)
    出版者: 國立中央大學
    摘要: The mechanisms of concentric distraction and distraction loss within the elbow-fixator-pin construct remains unclear. Furthermore, the literature reports are inconsistent regarding the correct distraction distance between the articulating surfaces of a bridged elbow. This study investigated the mechanism of the distraction loss in terms of the relevant fixator design and elbow angle. Four elbow joints flexed at 90 degrees, 120 degrees, 150 degrees, and 180 degrees were developed in this study. The contribution of each humeral and ulnar distractor to the concentric distraction at the elbow center was evaluated by the finite-element method. The distraction loss within the elbow-fixator-pin construct was studied along the specific load-transferring paths on both elbow sides. Among four elbow models, both concentric and eccentric distractions simultaneously occur at the elbow center. The distraction loss always exists in the joint distraction of the bridged elbow. Comparatively, the 120 degrees elbow model showed the more effectively concentric distraction. For the 180 degrees elbow model, the distraction loss was the highest. This distraction loss was mainly attributed to the lateral deflection of the fixing pins and the vectorial transformation of the distracted length of the distractors. The lateral deflection of the fixing pins is a function of the stiffness of both pins and periarticular tissues. The spatial relationship of the elbow anatomy, elbow angle, and fixator frame plays a significant role in the vectorial transformation of the effective distraction between the elbow articulating surfaces.
    關聯: JOURNAL OF MECHANICS
    顯示於類別:[生物醫學工程研究所 ] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML816檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明