English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 43276343      線上人數 : 964
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/49973


    題名: Studies of the binding mechanism between aptamers and thrombin by circular dichroism, surface plasmon resonance and isothermal titration calorimetry
    作者: Lin,PH;Chen,RH;Lee,CH;Chang,Y;Chen,CS;Chen,WY
    貢獻者: 化學工程與材料工程學系
    關鍵詞: SINGLE-STRANDED-DNA;SELECTION;PROTEINS;AFFINITY;SYSTEM;ALPHA;ASSAY
    日期: 2011
    上傳時間: 2012-03-27 16:27:47 (UTC+8)
    出版者: 國立中央大學
    摘要: Thrombin, a multifunctional serine protease, has both procoagulant and anticoagulant functions in human blood. Thrombin has two electropositive exosites. One is the fibrinogen-binding site and the other is the heparin-binding site. Over the past decade, two thrombin-binding aptamers (15-mer and 29-mer) were reported by SELEX technique. Recently, many studies examined the interactions between the 15-mer aptamer and thrombin extensively, but the data on the difference of these two aptamers binding to thrombin are still lacking and worth investigating for fundamental understanding. In the present study, we combined conformational data from circular dichroism (CD), kinetics and thermodynamics information from surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) to compare the binding mechanism between the two aptamers with thrombin. Special attentions were paid to the formation of G-quadruplex and the effects of ions on the aptamer conformation on the binding and the kinetics discrimination between specific and nonspecific interactions of the binding. The results indicated reasonably that the 15-mer aptamer bound to fibrinogen-binding site of thrombin using a G-quadruplex structure and was dominated by electrostatic interactions, while the 29-met aptamer bound to heparin-binding site thrombin using a duplex structure and was driven mainly by hydrophobic effects. (C) 2011 Elsevier B.V. All rights reserved.
    關聯: COLLOIDS AND SURFACES B-BIOINTERFACES
    顯示於類別:[化學工程與材料工程學系 ] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML638檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明