English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41630471      線上人數 : 3437
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/49977


    題名: Tensile deformation micromechanisms for bulk metallic glass matrix composites: From work-hardening to softening
    作者: Qiao,JW;Sun,AC;Huang,EW;Zhang,Y;Liaw,PK;Chuang,CP
    貢獻者: 化學工程與材料工程學系
    關鍵詞: NANOSTRUCTURE-DENDRITE COMPOSITE;MECHANICAL-PROPERTIES;ENHANCED PLASTICITY;AMORPHOUS-ALLOYS;DUCTILITY;MICROSTRUCTURE;BEHAVIOR
    日期: 2011
    上傳時間: 2012-03-27 16:27:53 (UTC+8)
    出版者: 國立中央大學
    摘要: A Ti-based bulk metallic glass matrix composite (BMGMC) with a homogeneous distribution of dendrites and the composition of Ti(46)Zr(20)V(12)Cu(5)Be(17) is characterized by a high tensile strength of similar to 1640 MPa and a large tensile strain of similar to 15.5% at room temperature. The present BMGMC exhibits the largest tensile ductility and highest fracture absorption energy under the stress-strain curve of all dendrite-reinforced BMGMCs developed to date. Tensile deformation micromechanisms are explored through experimental visualization and theoretical analyses. After tension, fragmentation of the dendrites, rather than crystallization within the glass matrix and/or atom debonding near the interface of dual-phase composites, is responsible for the high tensile ductility. The subdivisions within the interior of dendrites are separated by shear bands and dense dislocation walls, and local separation of dendrites under modes I and II prevails. The multiplication of dislocations, severe lattice distortions, and even local amorphization dominate within the dendrites. Good structural coherency of the interface is demonstrated, despite being subjected to significant plastic deformation. Theoretical analyses reveal that the constitutive relations elastic-elastic, elastic-plastic, and plastic-plastic of dual-phase BMGMC generally correspond to the (1) elastic, (2) work-hardening, and (3) softening deformation stages, respectively. The capacity for work-hardening is highly dependent on the large plastic deformation of the dendrites and the high yield strength of the glass matrix. The present study provides a fundamental basis for designing work-hardening dual-phase BMGMCs exhibiting remarkably homogeneous deformation. Crown Copyright (C) 2011 Published by Elsevier Ltd. on behalf of Acta Materialia Inc. All rights reserved.
    關聯: ACTA MATERIALIA
    顯示於類別:[化學工程與材料工程學系 ] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML604檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明