English  |  正體中文  |  简体中文  |  Items with full text/Total items : 69561/69561 (100%)
Visitors : 23032613      Online Users : 539
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/50043

    Title: An improved PTV technique to evaluate the velocity field of non-spherical particles
    Authors: Chung,YC;Hsiau,SS;Liao,HH;Ooi,JY
    Contributors: 機械工程學系
    Date: 2010
    Issue Date: 2012-03-27 17:02:00 (UTC+8)
    Publisher: 國立中央大學
    Abstract: In recent years, Particle Tracking Velocimetry (PTV) has been extensively used to measure the translational velocity field of granular assemblies in applications such as vibrated beds, rotating drums and Couette shear cells. However, this technique has not yet been shown to be able to determine the velocity field of non-spherical particles. The aim of this paper is to develop an improved PTV technique to determine translational and rotational velocities for non-spherical particles. To prove the feasibility of this new PTV technique, it was employed to investigate the convection behaviour of non-spherical particles in a vibrated bed. In the demonstration example, paired POM particles made by gluing two single POM beads were studied. The test example was a single layer quasi-2D model. The transport properties of the paired POM particles in a vibrated bed, such as local average velocities, local fluctuation velocities, granular temperatures, fluctuation velocity distributions, self-diffusion coefficients and dimensionless convection flow rates, were evaluated from the experimental results and discussed. The developed improved PTV technique is shown to have the ability to measure more accurately the velocity field of non-spherical particulate systems. The study has demonstrated the convection phenomenon of non-spherical particles in a vibrated bed and has shown that particle rotation is significant in the vibrated granular bed. In such a granular system with convection phenomenon, the average rotational kinetic energy constitutes approximately 5.4% of the average kinetic energy and in some local regions the rotational granular temperature amounts to over 17% of the total granular temperature. (C) 2010 Elsevier B.V. All rights reserved.
    Appears in Collections:[機械工程學系] 期刊論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明