The effect of the RF coil position during the stages of sapphire crystal growth process in an inductively heated Czochralski crystal growth furnace on the thermal and flow transport, the shape of the crystal-melt interface shape, and the power requirements is investigated numerically. The results show that although the maximum values of temperature and velocity decrease, the convexity of the crystal-melt interface increases as the crystal length grows. It is found that the least input power is required if the central position of the RF coil is maintained below the central position of the melt during the crystal growth process. Under such crystal growth conditions, the temperature gradients along the crystalline front are small. (C) 2009 Elsevier B.V. All rights reserved.