中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/50128
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41645551      Online Users : 1424
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/50128


    Title: Numerical study of a droplet migration induced by combined thermocapillary-buoyancy convection
    Authors: Nguyen,HB;Chen,JC
    Contributors: 機械工程學系
    Keywords: LEVEL SET METHOD;ON-A-CHIP;SOLID-SURFACE;THERMAL-GRADIENTS;CONTACT-ANGLE;2-PHASE FLOW;FLUID-FLOWS;INTERFACE;SLIP;TRACKING
    Date: 2010
    Issue Date: 2012-03-27 17:04:03 (UTC+8)
    Publisher: 國立中央大學
    Abstract: Numerical computations have been performed to study the effects of thermocapillary convection and buoyancy convection, and free surface deformation induced by gravity on the migration behavior of a liquid droplet on a horizontal solid surface subjected to a uniform temperature gradient. Investigations are carried out by solving the Navier-Stokes equations coupled with the energy equation through the finite element method. The combined thermocapillary and buoyancy force driven convection produces complex dynamic behavior of fluid motion inside the droplet. The net momentum generated by a pair of asymmetric thermocapillary convection vortices inside the droplet drives the droplet to move in both small and middle droplet sized regimes. In the small sized regime, the quasisteady migration speed of the droplet is mostly linearly proportional to its size because of the stronger net thermocapillary momentum. When the droplet is in the middle sized regime, its quasisteady migration speed reaches a maximum, but this is gradually reduced as the droplet size increases due to the suppression of the net thermocapillary momentum by the buoyancy force. In the large droplet sized regime, two pairs of convection vortices exist inside the droplet as a result of the appearance of the buoyancy-driven convection accompanying the thermocapillary convection. The quasisteady migration speed quickly diminishes mainly due to the reduction of the net thermocapillary momentum from the stronger buoyancy convection. (C) 2010 American Institute of Physics. [doi:10.1063/1.3524822]
    Relation: PHYSICS OF FLUIDS
    Appears in Collections:[Departmant of Mechanical Engineering ] journal & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML336View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明