中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/50166
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 42410068      在线人数 : 1216
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/50166


    题名: Study on Injection Molding Parameters for Thin-Shell Plastic Parts Using a Neural Network-Based Approach
    作者: Lin,JC;Yang,YK;Hsiao,YH;Jeng,MC
    贡献者: 機械工程學系
    日期: 2010
    上传时间: 2012-03-27 17:05:08 (UTC+8)
    出版者: 國立中央大學
    摘要: This study analyzed variation of warpage and tensile properties depending on injection molding parameters during production of thin-shell plastic components. A hybrid method integrating back-propagation neural network (BPNN), genetic algorithm (GA), and simulated annealing algorithm (SAA) are proposed to determine an optimal parameter setting of the injection-molding process. The results of 18 experimental runs were utilized to train the BPNN predicting warpage and tensile properties at various injection-molding conditions and then the GA and SAA approaches were applied to individual search for an optimal setting. The results show that the combinations of BPNN/ GA and BPNN/SAA methods are effective tool for the optimization of injection molding parameter.
    關聯: POLYMER-PLASTICS TECHNOLOGY AND ENGINEERING
    显示于类别:[機械工程學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML351检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明