中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/50222
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 78852/78852 (100%)
Visitors : 37994064      Online Users : 728
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/50222


    Title: Effects of the furnace pressure on oxygen and silicon oxide distributions during the growth of multicrystalline silicon ingots by the directional solidification process
    Authors: Teng,YY;Chen,JC;Lu,CW;Chen,HI;Hsu,C;Chen,CY
    Contributors: 機械工程學系
    Keywords: GAS-FLOW RATE;SOLAR-CELLS;CZOCHRALSKI FURNACE;TRANSPORT;CRYSTALS;CARBON;MODEL;TEMPERATURE;SIMULATION;SURFACE
    Date: 2011
    Issue Date: 2012-03-27 17:06:53 (UTC+8)
    Publisher: 國立中央大學
    Abstract: Oxygen impurities can reduce the carrier lifetime of mc-Si solar cells. In this study, simulations of the transient temperature, velocity and concentrations of oxygen and silicon oxide are carried out in order to clarify the transport mechanism of oxygen impurities in the silicon melt and silicon oxide through argon gas, in a directional solidification system (DSS) furnace. As the solidification fraction enlarges, the oxygen concentration in the melt diminishes, because of the reduction in the amount of crucible surface immersed below the silicon melt. When the solidification fraction is small, two pairs of vortices appear in the melt. Oxygen originating from the crucible is carried towards the free surface by the upper vortex. Oxygen concentration is higher with a higher furnace pressure rather than with a lower one due to the low SiO evaporation at the free surface. When the solidification fraction increases, the upper vortex gradually disappears. The lower vortex occupies almost the whole of the melt, with the exception of a small upper central region where a small vortex forms because of the cooling effect of the argon gas. Oxygen impurities carried by the lower vortex along the crystallization front towards the central region are obstructed by this small vortex. The size of the small vortex increases as the solidification fraction increases. Since the small vortex is stronger when the furnace pressure is higher, the concentration is lower around the central region. This means that the oxygen concentration is smaller when the furnace pressure is higher rather than lower. The simulation results agree well with the experimental results. (C) 2010 Elsevier B.V. All rights reserved.
    Relation: JOURNAL OF CRYSTAL GROWTH
    Appears in Collections:[機械工程學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML503View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明