This study proposes a novel pulse voltage configuration, auxiliary-pulse voltage, for wire electrical discharge machining (WEDM) of polycrystalline silicon (polysilicon) used in solar cell production. It is developed with the objectives of reducing material waste due to the large kerf loss as well as achieving greater efficiency and better quality compared with conventional machining approaches. Experimental results show that compared with conventional-pulse voltage supply, the auxiliary-pulse voltage mode can avoid delay in electrical discharge during pulse-on time. Enhanced frequency of effective discharge for machining would increase machining speed, which would in turn reduce machining groove width, and obtain better surface roughness. In addition, parameters of significant influence on machining characteristics were examined with the Taguchi method, and the optimal combination levels of machining parameters were determined. In sum, our findings reveal that WEDM with auxiliary-pulse voltage supply is an effective approach to machining polysilicon with good quality and high efficiency achieved.
關聯:
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY