English  |  正體中文  |  简体中文  |  Items with full text/Total items : 68069/68069 (100%)
Visitors : 23152467      Online Users : 207
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/50254

    Title: On interaction of centrally-ignited, outwardly-propagating premixed flames with fully-developed isotropic turbulence at elevated pressure
    Authors: Liu,CC;Shy,SS;Chen,HC;Peng,MW
    Contributors: 機械工程學系
    Date: 2011
    Issue Date: 2012-03-27 17:07:46 (UTC+8)
    Publisher: 國立中央大學
    Abstract: A new apparatus for the study of turbulent premixed flames at atmospheric and elevated pressures is proposed. The apparatus includes a high-pressure fan-stirred cruciform burner, the inner chamber, which is resided in a relatively large pressure-absorbing safety chamber (the outer chamber). Both chambers are optically accessible, allowing direct visualization and measurement of flame and turbulence interactions. The inner burner applies the same turbulence generating mechanism as that previously reported by Shy et al. [10], capable of generating intense near-isotropic turbulence. The additional modification lies in its vertical vessel which has four sensitive pressure-releasing valves installed symmetrically, so that the pressure difference between the inner and outer chambers during explosion can be eliminated. Flame speed measurements for centrally-ignited, outwardly-propagating lean CH(4)-air flames at the equivalence ratio phi = 0.8 under both quiescent and turbulent conditions are conducted over an initial pressure range of p = 0.1-1 MPa. It is found that, contrary to the popular scenario for laminar flames, the coupling influence of elevated pressure and turbulence significantly enhances turbulent flame speeds. Our experimental data show that the unstretched laminar burning velocities (S(L)) decrease with p(-0.52), while turbulent burning velocities (S(T)) increase with p(0.14) when a constant turbulent fluctuating velocity u' approximate to 1.4 m/s is applied. In terms of the power law relation proposed by Kobayashi and his co-workers, we found that S(T)/S(L) approximate to 1.07[(u'/S(L))(p/p(0))](0.44) where p(0) is the atmospheric pressure, showing a similar increasing trend but with much lower values of S(T)/S(L) to what they found in a Bunsen-type burner. It is suggested that S(T) approximate to p(0.14) is attributed to further flame surface area increment induced by the enhancement of hydrodynamic instability due to the decrease of kinematic viscosity at elevated pressure. (C) 2010 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
    Appears in Collections:[機械工程學系] 期刊論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明