English  |  正體中文  |  简体中文  |  Items with full text/Total items : 66984/66984 (100%)
Visitors : 23081723      Online Users : 585
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/50334

    Title: Sudden Surface Warming-Drying Events Caused by Typhoon Passages across Taiwan
    Authors: Chen,TC;Wang,SY;Yen,MC;Clark,AJ;Tsay,JD
    Contributors: 大氣物理研究所
    Date: 2010
    Issue Date: 2012-03-27 17:29:38 (UTC+8)
    Publisher: 國立中央大學
    Abstract: Typhoon passages across Taiwan can generate sudden surface warming in downslope regions. Special characteristics and mechanisms for 54 such warming events that were identified during the 1961-2007 period are examined. Preferred warming regions were identified in northwest Taiwan, where warming is generated by downslope flow from east or northeast winds in westward-moving typhoons, and in southeast Taiwan, where it is generated by downslope flow from west or northwest winds in northwestward-moving typhoons. In addition to the orographic effect, warmings occurred exclusively within nonprecipitation zones of typhoons. Most northwest (southeast) warmings occur during the day (night) with an average lifetime of 4 (5) h, which roughly corresponds to the average time a nonprecipitation zone remains over a station. During the period examined, three typhoons generated warming events in both northwest and southeast Taiwan, and only Typhoon Haitang (2005) generated warmings with comparable magnitudes (-12-K increase) in both regions. For Typhoon Haitang as an example, diagnostic analyses with two different approaches reveal that the majority of the warming is contributed by downslope adiabatic warming, but the warming associated with the passage of a nonprecipitation zone is not negligible. Similar results were found when these two diagnostic approaches were applied to the other warming events. The diurnal mode of the atmospheric divergent circulation over East Asia-western North Pacific undergoes a clockwise rotation. The vorticity tendency generated by this diurnal divergent circulation through vortex stretching may modulate the arrival time of typhoons to cause daily (nighttime) warming in the northwest (southeast).
    Appears in Collections:[大氣物理研究所 ] 期刊論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明