English  |  正體中文  |  简体中文  |  Items with full text/Total items : 78111/78111 (100%)
Visitors : 30621805      Online Users : 248
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/50339

    Title: Absolute optical energy of sprites and its relationship to charge moment of parent lightning discharge based on measurement by ISUAL/AP
    Authors: Takahashi,Y;Yoshida,A;Sato,M;Adachi,T;Kondo,S;Hsu,RR;Su,HT;Chen,AB;Mende,SB;Frey,HU;Lee,LC
    Contributors: 太空科學研究所
    Date: 2010
    Issue Date: 2012-03-27 17:29:43 (UTC+8)
    Publisher: 國立中央大學
    Abstract: Although the Quasi-electrostatic (QE) model has been considered a basic mechanism for describing sprite generation, the relationship between sprite luminosity and the charge moment change (CMC) value, caused by the sprites' parent lightning has not been examined quantitatively. CMC value represents the energy of cloud-to-ground discharge (CG) and the electric field intensity above the thunderstorm. We focused on the data obtained in 2004, in which both ISUAL on board the FORMOSAT-2 satellite and the Tohoku ELF network were operated throughout one year. We could estimate the absolute luminous intensity of sprites free from atmospheric influence with the ISUAL/Array Photometer (AP) and investigated its relationship to the charge moment of parent lightning. Absolute optical energies emitted from sprites were estimated for 14 streamer-type sprites for the first time. The averages of the time-integrated optical energies are 176 kJ and 119 kJ for the N2 1PG and N2 2PG bands, respectively. Furthermore, the optical energies and the charge moments of their parent lightning estimated with ELF data show a high correlation (correlation coefficient = 0.93), that is consistent, qualitatively, with the QE model. This relationship predicts that the 50% occurrence probability is located at similar to 600 C km, which coincides with previous statistical studies.
    Appears in Collections:[太空科學研究所 ] 期刊論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明