English  |  正體中文  |  简体中文  |  Items with full text/Total items : 69561/69561 (100%)
Visitors : 23169426      Online Users : 336
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/50358


    Title: Extreme Rainfall Mechanisms Exhibited by Typhoon Morakot (2009)
    Authors: Huang,CY;Wong,CS;Yeh,TC
    Contributors: 大氣物理研究所
    Keywords: DATA ASSIMILATION SCHEME;TROPICAL CYCLONE INITIALIZATION;VARIATIONAL DATA ASSIMILATION;ENSEMBLE KALMAN FILTER;ADVANCED RESEARCH WRF;HEAVY RAINFALL;TRACK DEFLECTION;TAIWAN OROGRAPHY;MOUNTAIN-RANGE;BDA SCHEME
    Date: 2011
    Issue Date: 2012-03-27 17:30:04 (UTC+8)
    Publisher: 國立中央大學
    Abstract: Moderate Typhoon Morakot (2009) became the most catastrophic typhoon in Taiwan on record. The MM5 numerical experiments with and without bogus data assimilation (BDA) were used to investigate the extreme rainfall mechanisms in Taiwan associated with the westbound typhoon. The BDA, based on 4DVAR, helps MM5 to maintain a more consolidated typhoon vortex and better predict the observed track after landfall, thus producing realistic extreme rainfall (about 2400 mm) at the southern and Central Mountain Range (CMR) of Taiwan. Severe rainfall in Taiwan is dominated by the CMR that hence modulates rainfall predictability. Model analyses indicate that the synoptic environment provides low-level preconditioning with large convective available energy (CAPE) in the southwest monsoon conveying belt in conjunction with the cyclonic Morakot. When Morakot passed slowly over north Taiwan, the developing Tropical Storm Goni, originating west of Hong Kong, facilitated the moist southwesterly flow to converge with the northerly cyclonic flow of Morakot. These processes contributed to enhanced rainfall in south Taiwan. In an experiment whereby the Goni vortex was initially deactivated by BDA, the southwesterly prevailing flow, southwest of Taiwan, weakened considerably and shifted southward at a later time, resulting in one-third reduction in total accumulated rainfall in south Taiwan. Conversely, total accumulated rainfall in Taiwan is greatly reduced when the initial Morakot vortex is deactivated. Removal of Taiwan topography results in a significant reduction in total accumulated rainfall by more than 50%, due to lack of orographic lift by the CMR.
    Relation: TERRESTRIAL ATMOSPHERIC AND OCEANIC SCIENCES
    Appears in Collections:[大氣物理研究所 ] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML548View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明