中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/50364
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42414467      線上人數 : 1192
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/50364


    題名: High-Resolution Numerical Simulation of the Extreme Rainfall Associated with Typhoon Morakot. Part I: Comparing the Impact of Microphysics and PBL Parameterizations with Observations
    作者: Tao,WK;Shi,JJ;Lin,PL;Chen,J;Lang,S;Chang,MY;Yang,MJ;Wu,CC;Peters-Lidard,C;Sui,CH;Jou,BJD
    貢獻者: 大氣物理研究所
    關鍵詞: PLANETARY BOUNDARY-LAYER;CLOUD MODEL;TROPICAL CYCLONES;BULK PARAMETERIZATION;MICROSCALE STRUCTURE;CONVECTIVE SYSTEMS;VERTICAL DIFFUSION;FRONTAL RAINBANDS;SITU OBSERVATIONS;HEAVY RAINFALL
    日期: 2011
    上傳時間: 2012-03-27 17:30:10 (UTC+8)
    出版者: 國立中央大學
    摘要: Typhoon Morakot hit Taiwan the night of 7 August 2009 as a Category 1 storm and caused up to 3000 mm of rain, leading to the worst flooding there in 50 years as well as devastating mudslides. The Weather Research and Forecasting model (WRF) is used at high resolution to simulate this extreme weather event. The model results indicate that WRF is able to capture the amount and location of the observed surface rainfall and that the typhoon-induced circulation, orographic lifting and a moisture-abundant southwest flow are the main mechanisms that together produced the tremendous rainfall in this case. Furthermore, the model results suggest that the agreement with the observed rainfall is due to the simulated storm track and intensity being in relatively good agreement with the observed. Additional simulations were made to examine the sensitivity of this case to model physics (microphysics and planetary boundary layer or PBL). Both warm rain only as well as improved microphysics yield similar significant rain amounts at the same locations as the control case. The improved microphysics lead to a better storm intensity early on but later exceed the observed intensities by about 10 hPa. The stronger storm arises from less evaporative cooling from cloud and rain and consequently weaker simulated downdrafts. Warm rain results closely match the control (i.e., the track, intensity, and maximum rainfall locations/amounts), implying ice processes (i.e., additional heat release due to ice processes) have only a secondary effect on surface rainfall. Results are less sensitive to using different PBL schemes than different microphysics.
    關聯: TERRESTRIAL ATMOSPHERIC AND OCEANIC SCIENCES
    顯示於類別:[大氣物理研究所 ] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML831檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明