English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 76645/76646 (100%)
造訪人次 : 39752511      線上人數 : 685
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/50382


    題名: Observational Error Estimation of FORMOSAT-3/COSMIC GPS Radio Occultation Data
    作者: Chen,SY;Huang,CY;Kuo,YH;Sokolovskiy,S
    貢獻者: 大氣物理研究所
    關鍵詞: NUMERICAL WEATHER PREDICTION;PHASE OBSERVATION OPERATOR;GLOBAL POSITIONING SYSTEM;DATA ASSIMILATION SYSTEM;STATISTICAL-INTERPOLATION;IMPACT;REFRACTIVITY;SIMULATION;FORECASTS;ANGLES
    日期: 2011
    上傳時間: 2012-03-27 17:30:32 (UTC+8)
    出版者: 國立中央大學
    摘要: The Global Positioning System (GPS) radio occultation (RO) technique is becoming a robust global observing system. GPS RO refractivity is typically modeled at the ray perigee point by a "local refractivity operator" in a data assimilation system. Such modeling does not take into account the horizontal gradients that affect the UPS RO refractivity. A new observable (linear excess phase), defined as an integral of the refractivity along some fixed ray path within the model domain, has been developed in earlier studies to account for the effect of horizontal gradients. In this study, the error statistics of both observables (refractivity and linear excess phase) are estimated using the GPS RO data from the Formosa Satellite 3-Constellation Observing System for Meteorology, Ionosphere and Climate (FORMOSAT-3/COSMIC) mission. The National Meteorological Center (NMC) method, which is based on lagged forecast differences, is applied for evaluation of the model forecast errors that are used for estimation of the UPS RO observational errors. Also used are Weather Research and Forecasting (WRF) model forecasts in the East Asia region at 45-km resolution for one winter month (mid-January to mid-February) and one summer month (mid-August to mid-September) in 2007. Fractional standard deviations of the observational errors of refractivity and linear excess phase both show an approximately linear decrease with height in the troposphere and a slight increase above the tropopause; their maximum magnitude is about 2.2% (2.5%) for refractivity and 1.1% (1.3%) for linear excess phase in the lowest 2 km for the winter (summer) month. An increase of both fractional observational errors near the surface in the summer month is attributed mainly to a larger amount of water vapor. The results indicate that the fractional observational error of refractivity is about twice as large as that of linear excess phase, regardless of season. The observational errors of both linear excess phase and refractivity are much less latitude dependent for summer than for winter. This difference is attributed to larger latitudinal variations of the specific humidity in winter.
    關聯: MONTHLY WEATHER REVIEW
    顯示於類別:[大氣物理研究所 ] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML671檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明