English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41627857      線上人數 : 2475
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/50398


    題名: Super-ensemble of three RCMs for climate projection over East Asia and Taiwan
    作者: Liu,CM;Wu,MC;Paul,S;Chen,YC;Lin,SH;Lin,WS;Lee,YC;Hsu,HH;Tseng,RY;Chen,CT
    貢獻者: 大氣物理研究所
    關鍵詞: REGIONAL SPECTRAL MODEL;CUMULUS PARAMETERIZATIONS;MULTIMODEL ENSEMBLE;GENERAL-CIRCULATION;SIMULATIONS;PRECIPITATION;EUROPE;SUPERENSEMBLE;VARIABILITY;PERFORMANCE
    日期: 2011
    上傳時間: 2012-03-27 17:30:52 (UTC+8)
    出版者: 國立中央大學
    摘要: Runs of three regional climate models (RCMs) dynamically downscaling the outputs of atmosphere-ocean coupling general circulation models (AOGCMs) are studied. These RCMs are NCAR-MM5, NCEP-RSM (Regional Spectral Model), and Purdue-PRM (Purdue Regional Model). A useful approach is developed to compare the variability, error, and spatial distribution of model-simulated results with respect to the Climatic Research Unit (CRU) datasets over East Asia and seven sub-regions during the 1990s. The results show that NCEP-RSM outperforms the other two in meeting criteria selected on evaluating the model performance. Furthermore, three super-ensemble approaches are tested on merging RCMs' outputs. The inverse of the square error summation (ISES) method is selected as a suitable method with a generally good performance during the verification period. The projected future climate changes by ISES indicate larger temperature increases over high-latitude continent and smaller over low-latitude maritime areas. Rainfall will increase in summer over the central simulation domain, i.e. the eastern China, but decrease in winter, which are clearly linked to the variation in the synoptic airflows. Also, a more frequent occurrence of extreme rainfall events than what happened in the 1990s is projected. The projection over Taiwan suggests strong warming in summer, followed by autumn, winter, and spring. The interaction between the synoptic flow and the local terrain affects significantly the changes in precipitation. In general, larger change of the variability of rainfall will be over areas with lesser rainfall in the future, while lesser change will be over areas with more projected rainfall.
    關聯: THEORETICAL AND APPLIED CLIMATOLOGY
    顯示於類別:[大氣物理研究所 ] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML614檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明