中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/50404
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42802942      Online Users : 934
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/50404


    Title: The impact of microphysical schemes on hurricane intensity and track
    Authors: Tao,WK;Shi,JJ;Chen,SYS;Lang,S;Lin,PL;Hong,SY;Peters-Lidard,C;Hou,A
    Contributors: 大氣物理研究所
    Keywords: CLOUD-RESOLVING MODEL;MIDLATITUDE SQUALL LINE;ICE-PHASE MICROPHYSICS;TWO-DIMENSIONAL MODEL;PART I;NUMERICAL-SIMULATION;TROPICAL CYCLONES;BULK PARAMETERIZATION;EXPLICIT FORECASTS;CONVECTIVE SYSTEMS
    Date: 2011
    Issue Date: 2012-03-27 17:30:58 (UTC+8)
    Publisher: 國立中央大學
    Abstract: During the past decade, both research and operational numerical weather prediction models [e.g. the Weather Research and Forecasting Model (WRF)] have started using more complex microphysical schemes originally developed for high-resolution cloud resolving models (CRMs) with 1-2 km or less horizontal resolutions. WRF is a next-generation meso-scale forecast model and assimilation system. It incorporates a modern software framework, advanced dynamics, numerics and data assimilation techniques, a multiple moveable nesting capability, and improved physical packages. WRF can be used for a wide range of applications, from idealized research to operational forecasting, with an emphasis on horizontal grid sizes in the range of 1-10 km. The current WRF includes several different microphysics options. At NASA Goddard, four different cloud microphysics options have been implemented into WRF. The performance of these schemes is compared to those of the other microphysics schemes available in WRF for an Atlantic hurricane case (Katrina). In addition, a brief review of previous modeling studies on the impact of microphysics schemes and processes on the intensity and track of hurricanes is presented and compared against the current Katrina study. In general, all of the studies show that microphysics schemes do not have a major impact on track forecasts but do have more of an effect on the simulated intensity. Also, nearly all of the previous studies found that simulated hurricanes had the strongest deepening or intensification when using only warm rain physics. This is because all of the simulated precipitating hydrometeors are large raindrops that quickly fall out near the eye-wall region, which would hydrostatically produce the lowest pressure. In addition, these studies suggested that intensities become unrealistically strong when evaporative cooling from cloud droplets and melting from ice particles are removed as this results in much weaker downdrafts in the simulated storms. However, there are many differences between the different modeling studies, which are identified and discussed.
    Relation: ASIA-PACIFIC JOURNAL OF ATMOSPHERIC SCIENCES
    Appears in Collections:[Department of Atmospheric Sciences and Graduate Institute of Atmospheric Physics ] journal & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML619View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明