中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/50420
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 41639476      在线人数 : 1291
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/50420


    题名: A global comparative study on the ionospheric measurements between COSMIC radio occultation technique and IRI model
    作者: Potula,BS;Chu,YH;Uma,G;Hsia,HP;Wu,KH
    贡献者: 太空科學研究所
    关键词: TOTAL ELECTRON-CONTENT;INCOHERENT-SCATTER RADAR;INTERNATIONAL REFERENCE IONOSPHERE;EQUATORIAL F-REGION;SCALE HEIGHT;IONOSONDE MEASUREMENTS;TOPSIDE IONOSPHERE;MILLSTONE HILL;TEC MEASUREMENTS;SOLAR MAXIMUM
    日期: 2011
    上传时间: 2012-03-27 17:31:21 (UTC+8)
    出版者: 國立中央大學
    摘要: We compare ionospheric parameters including total electron content (TEC), peak density, and height of the F2 layer (NmF2 and hmF2) between FORMOSAT-3/COSMIC (F3/C) GPS radio occultation (RO) technique retrieved and International Reference Ionosphere (IRI-2001) model predicted during different seasons in a low solar activity (LSA) year 2007. The comparison of topside TEC (tTEC, obtained by integrating electron density from hmF2 to 800 km) between IRI and F3/C shows that the IRI overestimates tTEC during both equinox seasons at around +/- 15 degrees magnetic latitudes during daytime, especially in March equinox while underestimation of tTEC predicted by IRI is a dominant feature for both solstices. Further, a common finding is that the IRI overestimates tTEC from evening to prenoon hours irrespective of season at around +/- 20 degrees magnetic latitudes, which is most likely due to the underestimation of hmF2 (by around 30-40 km), a key parameter on which the build of electron density profile depends in the model and inaccurate representation of the real profile by the topside electron density profiler model in IRI. The global distributions and seasonal variations of NmF2 show clear semiannual and annual asymmetry features during daytime and such features also reflected in IRI predicted peak densities with few exceptions. This high degree of agreement between tTEC comparison and the characteristic features of NmF2 global distributions indicates that the majority of contribution for tTEC has come from the F2 region. Further, it is also presented the global distributions of topside vertical scale heights (VSH) computed using electron density profiles retrieved from F3/C and predicted by IRI model during different seasons in year 2007. An important finding is that the topside VSH of F3/C profile data is meticulously following the geomagnetic equator during daytime irrespective of season and tends to increase toward higher latitudes. An appreciable latitudinal difference is found in the season averaged scale heights that derived with F3/C data during daytime while completely opposite results are found for IRI predicted scale heights. The discrepancies of topside VSH between the F3/C derived and predicted by IRI indicating that the shape of the topside electron density profile in the IRI model should desperately be revised accordingly such that it more closely resembles the real situation.
    關聯: JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
    显示于类别:[太空科學研究所 ] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML766检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明