We studied experimental data on ultra-violet (UV) nightglow in the wavelength range 300-400 nm, and energetic electron fluxes measured by low-altitude polar satellite Universitetskii-Tatiana. From statistical analysis we have found three latitudinal regions of enhanced UV emission at low, middle and high latitudes. Modeling the electron precipitations to the atmosphere gave numerical estimation of the generated UV radiation. We found that the stable and quasi-stable fluxes of electrons precipitating at middle and low latitudes are too weak to explain the observed intensities of UV radiation. The high-latitude UV nightglow with intensity of several kiloRayleighs results from particle precipitation in the regions of aurora and outer radiation belt. The low-latitude UV enhancements of several hundreds Rayleighs can be related to the emission of mesospheric atomic oxygen whose concentration increases substantially at latitudes from 20 degrees to 40 degrees. A mechanism of the mid-latitude UV enhancements is still unknown and requires further investigations. (C) 2011 Elsevier Ltd. All rights reserved.