English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41625704      線上人數 : 1934
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/50464


    題名: Structure, force balance, and evolution of incompressible cross-tail current sheet thinning
    作者: Saito,MH;Fairfield,D;Le,G;Hau,LN;Angelopoulos,V;McFadden,JP;Auster,U;Bonnell,JW;Larson,D
    貢獻者: 太空科學研究所
    關鍵詞: SUBSTORM GROWTH-PHASE;EARTH PLASMA SHEET;BALLOONING INSTABILITY;LOW-FREQUENCY;MAGNETOTAIL;ONSET;THEMIS;CONFIGURATION;INSTRUMENT;CONVECTION
    日期: 2011
    上傳時間: 2012-03-27 17:32:39 (UTC+8)
    出版者: 國立中央大學
    摘要: THEMIS five-point observations on April 8, 2009 were used to study thinning of the current sheet in the near-Earth tail that led to the onset of a small substorm. Taking advantage of a fortuitous alignment of the five spacecraft near 2300 LT and 11 R(E) and within 1.5 R(E) of the current sheet center, latitudinal gradients are analyzed. A significant latitudinal pressure gradient is present indicating the necessity of a (J x B)(z) force to maintain the pre-onset equilibrium state. During thinning the total pressure remained approximately constant at all spacecraft rather than increasing. Within the plasma sheet, magnetic field strength increased while plasma pressure decreased due to decreasing temperature. We present a comprehensive explanation for the relationship between the thinning, the stretched structure, and development of intense current density. Our analysis of this event suggests that (1) the thinning in this event is an MHD force-balanced self-evolving process and is not a forced process due to an increased lobe field; (2) the thinning changes flux tube structure in length and curvature but not significantly in volume; (3) the thinning evolves with a change of the radial plasma pressure profile in the near-Earth tail, which is associated with a locally intensified current sheet. The conclusion is that the increased lobe field strength is not the necessary and the primary cause for cross tail current sheet thinning but rather thinning can occur within the plasma sheet as a result of unknown internal processes.
    關聯: JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
    顯示於類別:[太空科學研究所 ] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML463檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明