中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/50489
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41638870      Online Users : 1779
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/50489


    Title: Performance of phosphoric acid activated montmorillonite as buffer materials for radioactive waste repository
    Authors: Wang,TH;Liu,TY;Wu,DC;Li,MH;Chen,JR;Teng,SP
    Contributors: 水文與海洋科學研究所
    Date: 2010
    Issue Date: 2012-03-27 17:33:20 (UTC+8)
    Publisher: 國立中央大學
    Abstract: In this study, the performance of phosphoric acid activated montmorillonite (PAmmt) was evaluated by cesium ions adsorption experiments. The PAmmt samples were obtained by activating with 1, 3 and 5 mol L(-1) of phosphoric acid, respectively under reflux for 3, 12, and 24 h. Experimental results demonstrated that the treatment of raw K-10 montmorillonite with phosphoric acid increased the materials' affinity for Cs uptake and no significant amount of suspension solids were produced. A relatively insignificant variation in the CEC value was observed. Furthermore, PAmmt also showed high adsorption selectivity toward Cs ions. The improved sorptive properties were mainly related to the increased surface area and the relatively higher surface charge density. Increased specific surface area was the resulted from partial decomposition of lamellar structure of mmt: while the higher surface charge density was caused by the protonation of octahedral Al-OH sites during the acid activation. Generally speaking, stronger acid concentration and longer activation times would produce relatively more decomposed PAmmt particles. However, as the activation exceeds 3 h, the precipitation of Si(4+) would passivate PAmmt against further acid attacks. Based upon our results, acid activation by phosphoric acid could produce PAmmt samples with high sorption capacity and selectivity, and good structural integrity, which are beneficial to be used at radioactive waste repository. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.
    Relation: JOURNAL OF HAZARDOUS MATERIALS
    Appears in Collections:[Graduate Institute of Hydrological and Oceanic Sciences] journal & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML764View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明