English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41625446      線上人數 : 1961
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/50506


    題名: The formation and breaching of a short-lived landslide dam at Hsiaolin Village, Taiwan - Part II: Simulation of debris flow with landslide dam breach
    作者: Li,MH;Sung,RT;Dong,JJ;Lee,CT;Chen,CC
    貢獻者: 水文與海洋科學研究所
    關鍵詞: FAILURE
    日期: 2011
    上傳時間: 2012-03-27 17:34:02 (UTC+8)
    出版者: 國立中央大學
    摘要: Typhoon Morakot (2009) caused serious damage in southern Taiwan due to intensive rainfall with long duration. The issue of greatest concern arising from the disasters brought about by this extreme event was the burying of the entire village of Hsiaolin by a massive debris flow and landslide. Based on seismological and near-surface magnetic data, this tragic scenario arose due to a combination of events, a massive landslide, the formation of a landslide dam, and the consequent debris flow when this dam was breached. The objective of this part of the study is to investigate the spatial and temporal characteristics of the debris flow induced by the landslide breach. The US National Weather Service BREACH model and the Federal Emergency Management Agency approved FLO-2D model are integrated to facilitate the investigation of this catastrophe. A series of simulations including a 2D rainfall-runoff simulation over the Cishan River basin, landslide dam breach routing, and 2D debris flow simulation around the Hsiaolin Village were conducted. Hydraulic calculations were performed to determine the equivalent top elevation of the landslide dam based on inflows computed from the 2D rainfall-runoff simulation in association with the Digital Terrain Model (DIM) and upstream constraint of the backwater inundation areas. The hydrograph of the upstream inflow which induced overtopping failure was provided by a 2D rainfall-runoff simulation using the FLO-2D model calibrated by comparison with the downstream discharge record. The longevity of the landslide dam was less than 1 h, and it took only about 8 minutes to completely breach. The peak discharge rate of this massive landslide dam breach was 70,649 m(3)/s. The dam break hydrograph was then used for upstream inflow to drive the FLO-2D debris flow simulation. The average sediment concentration by volume was 0.362. The simulated deposited sediment depth showed a reasonable match to the differences of DTMs before and after the disaster. (C) 2011 Elsevier B.V. All rights reserved.
    關聯: ENGINEERING GEOLOGY
    顯示於類別:[水文與海洋科學研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML736檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明