中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/50512
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 78852/78852 (100%)
Visitors : 37485713      Online Users : 842
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/50512


    Title: A quantitative analysis for geomorphic indices of longitudinal river profile: a case study of the Choushui River, Central Taiwan
    Authors: Lee,CS;Tsai,LL
    Contributors: 地球物理研究所
    Date: 2010
    Issue Date: 2012-03-27 17:35:48 (UTC+8)
    Publisher: 國立中央大學
    Abstract: Due to the plate movement is considerably slow, the human history record is too short to register landscape change for such a long time scale. However, longitudinal river profile can display watershed landscape characteristics. Therefore, this paper applies a quantitative analysis of geomorphic indices coupled with some mathematical models for the Choushui River and its six tributaries, including the gradient index and slope-area relationship. The abnormally high SL and SL/k values indicated that a decreasing trend from lower-to mid-stream areas and south Lishan fault was higher than north Lishan fault on the upstream areas, and the result of slope-area relationship also indicated that the regression line of the upper and lower steam exhibit an obvious right-shift nearby Lishan fault, could be explained by geodynamic models of active deformation in Taiwan area. This study also found that the abnormally high values of SL/k were affected by river and fault intersecting to form a high angle or perpendicular and the abnormally low values of SL/k were affected by river along with a fault or form a low angle, but the channel of Junda River along with Lishan fault is opposite. Based on quantitative results of these geomorphology indices, this study suggests that the important factor influencing landscape of the Choushui River watershed is tectonic uplift.
    Relation: ENVIRONMENTAL EARTH SCIENCES
    Appears in Collections:[Graduate Institute of Geophysics] journal & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML574View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明