English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 78852/78852 (100%)
造訪人次 : 38003747      線上人數 : 900
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/50588


    題名: Efficient conceptual framework to quantify flow uncertainty in large-scale, highly nonstationary groundwater systems
    作者: Ni,CF;Li,SG;Liu,CJ;Hsu,SM
    貢獻者: 應用地質研究所
    日期: 2010
    上傳時間: 2012-03-27 17:37:23 (UTC+8)
    出版者: 國立中央大學
    摘要: This study presents a hybrid spectral method (HSM) to estimate flow uncertainty in large-scale highly nonstationary groundwater systems. Taking advantages of spectral theories in solving unmodeled small-scale variability in hydraulic conductivity, the proposed HSM integrates analytical and numerical spectral solutions in the calculation procedures to estimate flow uncertainty. More specifically, the HSM involves two major computational steps after the mean flow equation is solved. The first step is to apply an analytical-based approximate spectral method (ASM) to predict nonstationary flow variances for entire modeling area. The perturbation-based numerical method, nonstationary spectral method (NSM), is then employed in the second step to correct the regional solution in local areas, where the variance dynamics is considered to be highly nonstationary (e.g., around inner boundaries or strong sources/sinks). The boundary conditions for the localized numerical solutions are based on the ASM closed form solutions at boundary nodes. Since the regional closed form solution is instantaneous and the more expensive perturbation-based numerical analysis is only applied locally around the strong stresses, the proposed HSM can be very efficient, making it possible to model strongly nonstationary variance dynamics with complex flow situations in large-scale groundwater systems. In this study the analytical-based ASM solutions was first assessed to quantify the solution accuracy under transient and inner boundary flow conditions. This study then illustrated the HSM accuracy and effectiveness with two synthetic examples. The HSM solutions were systematically compared with the corresponding numerical solutions of NSM and Monte Carlo simulation (MCS), and the analytical-based solutions of ASM. The simulation results have revealed that the HSM is computationally efficient and can provide accurate variance estimations for highly nonstationary large-scale groundwater flow problems. (C) 2009 Elsevier B.V. All rights reserved.
    關聯: JOURNAL OF HYDROLOGY
    顯示於類別:[應用地質研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML805檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明