English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42789995      線上人數 : 1270
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/50594


    題名: An integrated media, integrated processes watershed model
    作者: Yeh,GT;Shih,DS;Cheng,JRC
    貢獻者: 應用地質研究所
    關鍵詞: SYSTEME HYDROLOGIQUE EUROPEEN;SHE
    日期: 2011
    上傳時間: 2012-03-27 17:37:30 (UTC+8)
    出版者: 國立中央大學
    摘要: Parametric-based, lumped watershed models have been widely employed for integrated surface and groundwater modelling to calculate surface runoff on various temporal and spatial scales of hydrologic regimes. Physics-based, process-level, distributed models that have the design capability to cover multimedia and multi-processes and are applicable to various scales have been practically nonexistent until late 1990s. It has long been recognized that only such models have the potential to further the understanding of the fundamental factors that take place in nature hydrologic regimes: to give mechanistic predictions; and most importantly to be able to couple and interact with weather/climate models. However, there are severe limitations with these models that inhibit their use. These are, among other things, the ad hoc approaches of coupling between various media, the simplification of modelling overland and/or river flow, and the excessive demand of computational time. This paper presents the development of an integrated media (river/stream networks, overland regime, and subsurface media), integrated processes (evaporation, evapotranspiration, infiltration, recharges, and flows) watershed model to address these issues. Rigorous coupling strategies are described for interactions among overland regime, rivers/streams/canals networks, and subsurface media. The necessities to include various options in modelling surface runoff and river hydraulics are emphasized. The options of selecting characteristic wave directions for two-dimensional problems are stated. The implementation of high performance computing to increase the computational speed is discussed. Four examples are used to demonstrate the flexibility and efficiency of the model as applied to a theoretical benchmark scale, a parallel computing, and two project-level large scale problems - one in Taiwan and the other in Florida. (C) 2010 Elsevier Ltd. All rights reserved.
    關聯: COMPUTERS & FLUIDS
    顯示於類別:[應用地質研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML733檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明