The relationships between the Hurst exponent H and the power-law scaling exponent B in a new modification of sandpile models, i.e. the long-range connective sandpile (LRCS) models, exhibit a strong dependence upon the system size L. As L decreases. the LRCS model can demonstrate a transition from the negative to positive correlations between H- and B-values. While the negative and null correlations are associated with the fractional Gaussian noise and generalized Cauchy processes, respectively, the regime with the positive correlation between the Hurst and power-law scaling exponents may suggest an unknown, interesting class of the stochastic processes. (C) 2010 Elsevier B.V. All rights reserved.