中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/50626
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 78818/78818 (100%)
造访人次 : 34623848      在线人数 : 552
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/50626


    题名: An improved genetic programming to SSM/I estimation typhoon precipitation over ocean
    作者: Chen,L;Yeh,KC;Wei,HP;Liu,GR
    贡献者: 太空及遙測研究中心
    关键词: ARTIFICIAL NEURAL-NETWORKS;RAINFALL ESTIMATION;SATELLITE IMAGERY;RADAR;PROJECT;ANN
    日期: 2011
    上传时间: 2012-03-27 17:49:22 (UTC+8)
    出版者: 國立中央大學
    摘要: This article proposes an improved multi-run genetic programming (GP) and applies it to estimate the typhoon rainfall over ocean using multi-variable meteorological satellite data. GP is a well-known evolutionary programming and data mining method used to automatically discover the complex relationships among nonlinear systems. The main advantage of GP is to optimize appropriate types of function and their associated coefficients simultaneously. However, the searching efficiency of traditional GP can be decreased by the complex structure of parse tree to represent the multiple input variables. This study processed an improvement to enhance escape ability from local optimums during the optimization procedure. We continuously run GP several times by replacing the terminal nodes at the next run with the best solution at the current run. The current method improves GP, obtaining a highly nonlinear meaningful equation to estimate the rainfall. In the case study, this improved GP (IGP) described above combined with special sensor microwave imager (SSM/I) seven channels was employed. These results are then verified with the data from four offshore rainfall stations located on islands around Taiwan. The results show that the IGP generates sophisticated and accurate multi-variable equation through two runs. The performance of IGP outperforms the traditional multiple linear regression, back-propagated network (BPN) and three empirical equations. Because the extremely high values of precipitation rate are quite few and the number of zero values (no rain) is very large, the underestimations of heavy rainfall are obvious. A simple genetic algorithm was therefore used to search for the optimal threshold value of SSM/I channels, detecting the data of no rain. The IGP with two runs, used to construct an appropriate mathematical function to estimate the precipitation, can obtain more favourable results from estimating extremely high values. Copyright. (C) 2011 John Wiley & Sons, Ltd.
    關聯: HYDROLOGICAL PROCESSES
    显示于类别:[太空及遙測研究中心] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML746检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明