English  |  正體中文  |  简体中文  |  Items with full text/Total items : 69937/69937 (100%)
Visitors : 23167558      Online Users : 611
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/50629

    Title: Establishment of a new tropospheric delay correction model over China area
    Authors: Song,SL;Zhu,WY;Chen,QM;Liou,YA
    Contributors: 太空及遙測研究中心
    Date: 2011
    Issue Date: 2012-03-27 17:49:27 (UTC+8)
    Publisher: 國立中央大學
    Abstract: The tropospheric delay is one of the main error sources for radio navigation technologies and other ground- or space-based earth observation systems. In this paper, the spatial and temporal variations of the zenith tropospheric delay (ZTD), especially their dependence on altitude over China region, are analyzed using ECMWF (European Centre for Medium-Range Weather Forecast) pressure-level atmospheric data in 2004 and the ZTD series in 1999-2007 measured at 28 GPS stations from the Crustal Movement Observation Network of China (CMONC). A new tropospheric delay correction model (SHAO) is derived and a regional realization of this model for China region named SHAO-C is established. In SHAO-C model, ZTD is modeled directly by a cosine function together with an initial value and an amplitude at a reference height in each grid, and the variation of ZTD along altitude is fitted with a second-order polynomial. The coefficients of SHAO-C are generated using the meteorology data in China area and given at two degree latitude and longitude interval, featuring regional characteristics in order to facilitate a wide range of navigation and other surveying applications in and around China. Compared with the EGNOS (European Geostationary Navigation Overlay Service) model, which has been used globally and recommended by the European Union Wide Area Augmentation System, the ZTD prediction (in form of spatial and temporal projection) accuracy of the SHAO-C model is significantly improved over China region, especially at stations of higher altitudes. The reasons for the improvement are: (1) the reference altitude of SHAO-C parameters are given at the average height of each grid, and (2) more detailed description of complicated terrain variations in China is incorporated in the model. Therefore, the accumulated error at higher altitude can be reduced considerably. In contrast, the ZTD has to be calculated from the mean sea level with EGNOS and other models. Compared with the direct estimation of ZTD from the 28 GPS stations, the accuracy of the derived ZTD using the SHAO-C model can be improved by 60.5% averagely compared with the EGNOS model. The overall bias and rms are 2.0 and 4.5 cm, respectively, which should be sufficient to satisfy the requirements of most GNSS navigation or positioning applications in terms of the tropospheric delay correction.
    Appears in Collections:[太空及遙測研究中心] 期刊論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明