English  |  正體中文  |  简体中文  |  Items with full text/Total items : 66984/66984 (100%)
Visitors : 23155725      Online Users : 429
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/50637


    Title: Mesoscale processes for super heavy rainfall of Typhoon Morakot (2009) over Southern Taiwan
    Authors: Lin,CY;Hsu,HM;Sheng,YF;Kuo,CH;Liou,YA
    Contributors: 太空及遙測研究中心
    Keywords: TROPICAL CYCLONE;PART I;POTENTIAL VORTICITY;CONVECTIVE SYSTEMS;MU RADAR;HURRICANE;PASSAGE;WAVES;MECHANISMS;SIMULATION
    Date: 2011
    Issue Date: 2012-03-27 17:49:39 (UTC+8)
    Publisher: 國立中央大學
    Abstract: Within 100 h, a record-breaking rainfall, 2855 mm, was brought to Taiwan by typhoon Morakot in August 2009 resulting in devastating landslides and casualties. Analyses and simulations show that under favorable large-scale situations, this unprecedented precipitation was caused first by the convergence of the southerly component of the pre-existing strong southwesterly monsoonal flow and the northerly component of the typhoon circulation. Then the westerly component of southwesterly flow pushed the highly moist air (mean specific humidity > 16 g/kg between 950 and 700 hPa from NCEP GFS data set) eastward against the Central Mountain Range, and forced it to lift in the preferred area. From the fine-scale numerical simulation, not only did the convergence itself provide the source of the heavy rainfall when it interacted with the topography, but also convective cells existed within the typhoon's main rainband. The convective cells were in the form of small rainbands perpendicular to the main one, and propagated as wave trains downwind. As the main rainband moved northward and reached the southern CMR, convective cells inside the narrow convergence zone to the south and those to the north as wave trains, both rained heavily as they were lifted by the west-facing mountain slopes. Those mesoscale processes were responsible for the unprecedented heavy rainfall total that accompanied this typhoon.
    Relation: ATMOSPHERIC CHEMISTRY AND PHYSICS
    Appears in Collections:[太空及遙測研究中心] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML457View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明