English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42790504      線上人數 : 1165
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/50645


    題名: Wavelet filtering of time-series moderate resolution imaging spectroradiometer data for rice crop mapping using support vector machines and maximum likelihood classifier
    作者: Chen,CF;Son,NT;Chen,CR;Chang,LY
    貢獻者: 太空及遙測研究中心
    關鍵詞: FOURIER-ANALYSIS;AGRICULTURE;PHENOLOGY;SYSTEMS
    日期: 2011
    上傳時間: 2012-03-27 17:49:51 (UTC+8)
    出版者: 國立中央大學
    摘要: Rice is the most important economic crop in Vietnam's Mekong Delta (MD). It is the main source of employment and income for rural people in this region. Yearly estimates of rice growing areas and delineation of spatial distribution of rice crops are needed to devise agricultural economic plans and to ensure security of the food supply. The main objective of this study is to map rice cropping systems with respect to monitoring agricultural practices in the MD using time-series moderate resolution imaging spectroradiometer (MODIS) normalized difference vegetation index (NDVI) 250-m data. These time-series NDVI data were derived from the 8-day MODIS 250-m data acquired in 2008. Various spatial and nonspatial data were also used for accuracy verification. The method used in this study consists of the following three main steps: 1. filtering noise from the time-series NDVI data using wavelet transformation (Coiflet 4); 2. classification of rice cropping systems using parametric and nonparametric classification algorithms: the maximum likelihood classifier (MLC) and support vector machines (SVMs); and 3. verification of classification results using ground truth data and government rice statistics. Good results can be found using wavelet transformation for cleaning rice signatures. The results of classification accuracy assessment showed that the SVMs outperformed the MLC. The overall accuracy and Kappa coefficient achieved by the SVMs were 89.7% and 0.86, respectively, while those achieved by the MLC were 76.2% and 0.68, respectively. Comparison of the MODIS-derived areas obtained by the SVMs with the government rice statistics at the provincial level also demonstrated that the results achieved by the SVMs (R(2) = 0.95) were better than the MLC (R(2) = 0.91). This study demonstrates the effectiveness of using a nonparametric classification algorithm (SVMs) and time-series MODIS NVDI data for rice crop mapping in the Vietnamese MD. (C) 2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3595272]
    關聯: JOURNAL OF APPLIED REMOTE SENSING
    顯示於類別:[太空及遙測研究中心] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML702檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明