We present two scenarios for production of the Quadrantid stream based on two different models for its origin: the extinct model in which 2003EH1 was an active comet that released the dust particles during past 5000 years, stopping its activity abruptly in AD 1488; and the split model; in which a catastrophic disruption of an asteroid at AD 1488 released a large number of dust particles in a single event. We calculate the orbital evolution of test particles released in both cases and derive the resulting size distribution of surviving meteoroids in the current Quadrantid stream in the form of s (-alpha) ds, where s denotes the radius of a meteoroid. We find alpha = 3.1 in the extinct model and 2.0 in the split model. In addition, the radius of the surviving meteoroids is derived as s > 10 mu m in the both models. We propose, based on our estimation of the infrared color ratio for the Quadrantid stream derived from both models, that infrared observations of the Quadrantid stream may determine which origin model is more reasonable.