English  |  正體中文  |  简体中文  |  Items with full text/Total items : 65318/65318 (100%)
Visitors : 21730257      Online Users : 200
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/50867


    Title: El Nino-Southern Oscillation in Tropical and Midlatitude Column Ozone
    Authors: Wang,JQ;Pawson,S;Tian,BJ;Liang,MC;Shia,RL;Yung,YL;Jiang,X
    Contributors: 天文研究所
    Keywords: QUASI-BIENNIAL OSCILLATION;SEA-SURFACE TEMPERATURE;INTERANNUAL VARIABILITY;TROPOPAUSE PRESSURE;TROPOSPHERIC OZONE;SPATIAL-PATTERNS;TRANSPORT MODEL;GLOBAL QBO;TRENDS;STRATOSPHERE
    Date: 2011
    Issue Date: 2012-03-27 18:11:41 (UTC+8)
    Publisher: 國立中央大學
    Abstract: The impacts of El Nino-Southern Oscillation (ENSO) on the tropical total column ozone, the tropical tropopause pressure, and the 3.5-yr ozone signal in the midlatitude total column ozone were examined using the Goddard Earth Observing System Chemistry-Climate Model (GEOS CCM). Observed monthly mean sea surface temperature and sea ice between 1951 and 2004 were used as boundary conditions for the model. Since the model includes no solar cycle, quasi-biennial oscillation, or volcanic forcing, the ENSO signal was found to dominate the tropical total column ozone variability. Principal component analysis was applied to the detrended, deseasonalized, and low-pass filtered model outputs. The first mode of model total column ozone captured 63.8% of the total variance. The spatial pattern of this mode was similar to that in Total Ozone Mapping Spectrometer (TOMS) observations. There was also a clear ENSO signal in the tropical tropopause pressure in the GEOS CCM, which is related to the ENSO signal in the total column ozone. The regression coefficient between the model total column ozone and the model tropopause pressure was 0.71 Dobson units (DU) hPa(-1). The GEOS CCM was also used to investigate a possible mechanism for the 3.5-yr signal observed in the midlatitude total column ozone. The 3.5-yr signal in the GEOS CCM column ozone is similar to that in the observations, which suggests that a model with realistic ENSO can reproduce the 3.5-yr signal. Hence, it is likely that the 3.5-yr signal was caused by ENSO.
    Relation: JOURNAL OF THE ATMOSPHERIC SCIENCES
    Appears in Collections:[天文研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML348View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明