Background: The timely and accurate diagnosis of specific influenza virus strains is crucial to effective prophylaxis, vaccine preparation and early antiviral therapy. The detection of influenza A viruses is mainly accomplished using polymerase chain reaction (PCR) techniques or antibody-based assays. In conjugation with the immunoassay utilizing monoclonal antibody, mass spectrometry is an alternative to identify proteins derived from a target influenza virus. Taking advantage of the large surface area-to-volume ratio, antibody-conjugated magnetic nanoparticles can act as an effective probe to extract influenza virus for sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) and on-bead mass spectrometric analysis. Results: Iron oxide magnetic nanoparticles (MNP) were functionalized with H5N2 viral antibodies targeting the hemagglutinin protein and capped with methoxy-terminated ethylene glycol to suppress nonspecific binding. The antibody-conjugated MNPs possessed a high specificity to H5N2 virus without cross-reactivity with recombinant H5N1 viruses. The unambiguous identification of the captured hemagglutinin on magnetic nanoparticles was realized by SDS-PAGE visualization and peptide sequence identification using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Conclusions: The assay combining efficient magnetic separation and MALDI-MS readout offers a rapid and sensitive method for virus screening. Direct on-MNP detection by matrix-assisted laser desorption/ ionization time-of-flight mass spectrometry (MALDI-TOF MS) provided high sensitivity (similar to 10(3) EID(50) per mL) and a timely diagnosis within one hour. The magnetic nanoparticles encapsulated with monoclonal antibodies could be used as a specific probe to distinguish different subtypes of influenza.