English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 43595189      線上人數 : 1089
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/51066


    題名: An expert system to identify co-regulated gene groups from time-lagged gene clusters using cell cycle expression data
    作者: Wu,LC;Huang,JL;Horng,JT;Huang,HD
    貢獻者: 系統生物與生物資訊研究所
    關鍵詞: SACCHAROMYCES-CEREVISIAE;IDENTIFICATION
    日期: 2010
    上傳時間: 2012-03-27 18:20:23 (UTC+8)
    出版者: 國立中央大學
    摘要: Motivation: The analysis of time series gene expression data can provide us with the opportunity to find co-regulated genes that show a similar expression patterns under a contiguous subset of experimental conditions. However, these co-regulated genes may behave almost independently under other conditions. Furthermore, the similarity in the expression pattern might be time-shifted. In that case, we need to be concerned with grouping genes that share similar expression patterns under a contiguous subset of conditions and where the similarity in expression pattern might have time lags. in addition, to be considered a time-shifted similar pattern, because co-regulated genes in a biological process may show a periodic pattern in their cell cycle expression, we also should group genes with periodic similar patterns over multiple cell cycles. If this is carried out, we can regard such grouped genes as cell-cycle regulated genes. Results: We propose a method that follows the q-cluster concept [Ji, L., & Tan, K. L. (2005). Identifying time-lagged gene clusters using gene expression data. Bioinformatics, 21(4), 509-516] and further advances this approach towards the identification of cell-cycle regulated genes using cell cycle microarray data. We used our method to Cluster a microarray time series of yeast genes to assess the statistically biological significance of the obtained clusters we used the p-value obtained from the hypergeometric distribution. We found that several clusters provided findings suggesting a TF-target relationship. In order to test whether our method could group related genes that other methods have found difficult to group, we compared our method with other measures such as Spearman Rank Correlation and Pearson Correlation. The results of the comparison demonstrate that our method indeed could group known related genes that these measures regard as having only a weak association. (C) 2009 Elsevier Ltd. All rights reserved.
    關聯: EXPERT SYSTEMS WITH APPLICATIONS
    顯示於類別:[系統生物與生物資訊研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML668檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明