English  |  正體中文  |  简体中文  |  Items with full text/Total items : 66984/66984 (100%)
Visitors : 22915837      Online Users : 972
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    NCU Institutional Repository > 理學院 > 數學系 > 期刊論文 >  Item 987654321/51125


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/51125


    Title: Calderon-Zygmund operators on product Hardy spaces
    Authors: Han,YS;Lee,MY;Lin,CC;Lin,YC
    Contributors: 數學系
    Date: 2010
    Issue Date: 2012-03-27 18:22:28 (UTC+8)
    Publisher: 國立中央大學
    Abstract: Let T be a product Calderon-Zygmund singular integral introduced by Journe. Using an elegant rectangle atomic decomposition of H(p) (R(n) x R(m)) and Journe's geometric covering lemma, R. Fefferman proved the remarkable H(p)(R(n) x R(m)) - L(p)(R(n) x R(m)) boundedness of T. In this paper we apply vector-valued singular integral, Calderon's identity, Littlewood-Paley theory and the almost orthogonality together with Fefferman's rectangle atomic decomposition and Journe's covering lemma to show that T is bounded on product H(p)(R(n) x R(m)) for max{n/n+epsilon, m/m+epsilon} < p <= 1 if and only if T(1)*(1) = T(2)*(1) = 0, where epsilon is the regularity exponent of the kernel of T. (C) 2009 Elsevier Inc. All rights reserved.
    Relation: JOURNAL OF FUNCTIONAL ANALYSIS
    Appears in Collections:[數學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML367View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明