|
English
|
正體中文
|
简体中文
|
全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41635321
線上人數 : 1374
|
|
|
資料載入中.....
|
請使用永久網址來引用或連結此文件:
http://ir.lib.ncu.edu.tw/handle/987654321/51127
|
題名: | Crawford numbers of powers of a matrix |
作者: | Wang,KZ;Wu,PY;Gau,HL |
貢獻者: | 數學系 |
關鍵詞: | VALUES |
日期: | 2010 |
上傳時間: | 2012-03-27 18:22:33 (UTC+8) |
出版者: | 國立中央大學 |
摘要: | For an n-by-n matrix A, its Crawford number c(A) (resp., generalized Crawford number C(A)) is, by definition, the distance from the origin to its numerical range W(A) (resp., the boundary of its numerical range partial derivative W(A)). It is shown that if A has eigenvalues lambda(1), ..., lambda(n) An arranged so that vertical bar lambda(1)vertical bar >= ... >= vertical bar lambda(n)vertical bar, then (lim) over bar (k) c(A(k))(1/k) (resp., (lim) over bar (k) C(A(k))(1/k))equals 0 or vertical bar lambda(n)vertical bar (resp., vertical bar lambda(j)vertical bar for some j, 1 <= j <= n). For a normal A. more can be said, namely, (lim) over bar (k) c(A(k))(1/k) = vertical bar lambda(n)vertical bar (resp., (lim) over bar (k) C(A(k))(1/k) = vertical bar lambda(j)vertical bar for some j, 3 <= j <= n). In these cases, the above possible values can all be assumed by some A. (C) 2010 Elsevier Inc. All rights reserved. |
關聯: | LINEAR ALGEBRA AND ITS APPLICATIONS |
顯示於類別: | [數學系] 期刊論文
|
文件中的檔案:
檔案 |
描述 |
大小 | 格式 | 瀏覽次數 |
index.html | | 0Kb | HTML | 442 | 檢視/開啟 |
|
在NCUIR中所有的資料項目都受到原著作權保護.
|
::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::