English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42119518      線上人數 : 1423
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    NCU Institutional Repository > 理學院 > 數學系 > 期刊論文 >  Item 987654321/51128


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/51128


    題名: Defect indices of powers of a contraction
    作者: Gau,HL;Wu,PY
    貢獻者: 數學系
    關鍵詞: TOEPLITZ OPERATORS
    日期: 2010
    上傳時間: 2012-03-27 18:22:36 (UTC+8)
    出版者: 國立中央大學
    摘要: Let A be a contraction on a Hilbert space H. The defect index d(A) of A is, by definition, the dimension of the closure of the range of l - A*A. We prove that (1) d(An) <= nd(A) for all n >= 0, (2) if, in addition, A(n) converges to 0 in the strong operator topology and d(A) = 1, then d(An) = n for all finite n, 0 <= n <= dim H, and (3) d(A) = d(A)* implies d(An) = d(An)* for all n >= 0. The norm-one index k(A) of A is defined as sup{n >= 0 : parallel to A(n)parallel to = 1}. When dim H = m < infinity, a lower bound for k(A) was obtained before: k(A) >= (m/d(A)) - 1. We show that the equality holds if and only if either A is unitary or the eigenvalues of A are all in the open unit disc, d(A) divides m and d(An) = nd(A) for all n, 1 <= n <= m/d(A). We also consider the defect index of f(A) for a finite Blaschke product f and show that d(f(A)) = d(An), where n is the number of zeros off. (C) 2009 Elsevier Inc. All rights reserved.
    關聯: LINEAR ALGEBRA AND ITS APPLICATIONS
    顯示於類別:[數學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML463檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明